首页 > 最新文献

Ultramicroscopy最新文献

英文 中文
Point field emission electron source with a magnetically focused electron beam 带有磁聚焦电子束的点场发射电子源
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-21 DOI: 10.1016/j.ultramic.2023.113911
Paweł Urbański, Piotr Szyszka, Marcin Białas, Tomasz Grzebyk

This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.

本文介绍了一种场发射器,其形式是在硅尖上覆盖一层碳纳米管。发射的光束通过一组两个静电透镜和磁场聚焦,这在此类结构中尚属首次。所提出的方法取得了非常有前景的结果。场发射器能够提供较高的发射电流(约 50 µA)和均匀的小光斑光束。这种电子源是许多微型微机电系统和纳米电子器件的必要组成部分。该电子源特别适用于目前开发的微机电系统 X 射线源和微机电系统电子显微镜。
{"title":"Point field emission electron source with a magnetically focused electron beam","authors":"Paweł Urbański, Piotr Szyszka, Marcin Białas, Tomasz Grzebyk","doi":"10.1016/j.ultramic.2023.113911","DOIUrl":"https://doi.org/10.1016/j.ultramic.2023.113911","url":null,"abstract":"<p>This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.</p>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point field emission electron source with a magnetically focused electron beam 带有磁聚焦电子束的点场发射电子源
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-21 DOI: 10.1016/j.ultramic.2023.113911
Paweł Urbański, Piotr Szyszka, Marcin Białas, Tomasz Grzebyk

This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.

本文介绍了一种场发射器,其形式是在硅尖上覆盖一层碳纳米管。发射的光束通过一组两个静电透镜和磁场聚焦,这在此类结构中尚属首次。所提出的方法取得了非常有前景的结果。场发射器能够提供较高的发射电流(约 50 µA)和均匀的小光斑光束。这种电子源是许多微型微机电系统和纳米电子器件的必要组成部分。该电子源特别适用于目前开发的微机电系统 X 射线源和微机电系统电子显微镜。
{"title":"Point field emission electron source with a magnetically focused electron beam","authors":"Paweł Urbański,&nbsp;Piotr Szyszka,&nbsp;Marcin Białas,&nbsp;Tomasz Grzebyk","doi":"10.1016/j.ultramic.2023.113911","DOIUrl":"10.1016/j.ultramic.2023.113911","url":null,"abstract":"<div><p>This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139024565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generational assessment of EBSD detectors for cross-correlation-based analysis: From scintillators to direct detection 基于交叉相关分析的 EBSD 探测器的世代评估:从闪烁体到直接探测
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-21 DOI: 10.1016/j.ultramic.2023.113913
Josephine DeRonja , Matthew Nowell , Stuart Wright , Josh Kacher

Introduced over ten years ago, cross-correlation-based electron backscatter diffraction has enabled high precision measurements of crystallographic rotations and elastic strain gradients at high spatial resolution. Since that time, there have been remarkable improvements in electron detector technology, including the advent of ultra-high speed detectors and the commercialization of direct detectors. In this study, we assess the efficacy of multiple generations of electron detectors for cross-correlation-based analysis using a single crystal Si sample as a reference. We show that, while improvements in precision are modest, there have been significant gains in the rate at which high-quality diffraction patterns can be collected. This has important implications in the size of datasets that can be collected and reduces the impact of drift and sample contamination.

基于交叉相关的电子反向散射衍射技术于十多年前问世,可以在高空间分辨率下对晶体旋转和弹性应变梯度进行高精度测量。从那时起,电子探测器技术有了显著的进步,包括超高速探测器的出现和直接探测器的商业化。在本研究中,我们以单晶硅样品为基准,评估了多代电子探测器在基于交叉相关分析中的功效。我们的研究表明,虽然在精度方面的改进不大,但在高质量衍射图样的采集速度方面却有显著提高。这对可收集的数据集的大小具有重要影响,并可减少漂移和样品污染的影响。
{"title":"Generational assessment of EBSD detectors for cross-correlation-based analysis: From scintillators to direct detection","authors":"Josephine DeRonja ,&nbsp;Matthew Nowell ,&nbsp;Stuart Wright ,&nbsp;Josh Kacher","doi":"10.1016/j.ultramic.2023.113913","DOIUrl":"10.1016/j.ultramic.2023.113913","url":null,"abstract":"<div><p>Introduced over ten years ago, cross-correlation-based electron backscatter diffraction has enabled high precision measurements of crystallographic rotations and elastic strain gradients at high spatial resolution. Since that time, there have been remarkable improvements in electron detector technology, including the advent of ultra-high speed detectors and the commercialization of direct detectors. In this study, we assess the efficacy of multiple generations of electron detectors for cross-correlation-based analysis using a single crystal Si sample as a reference. We show that, while improvements in precision are modest, there have been significant gains in the rate at which high-quality diffraction patterns can be collected. This has important implications in the size of datasets that can be collected and reduces the impact of drift and sample contamination.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does the order of elastic and inelastic scattering affect an image or is there a top bottom effect from inelastic scattering? 弹性散射和非弹性散射的顺序是否会影响图像,或者非弹性散射是否会产生自上而下的效应?
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-14 DOI: 10.1016/j.ultramic.2023.113890
Peter Rez

Especially for light elements inelastic scattering is more probable than the elastic scattering that conveys the structural information. The question arises as to whether an image using inelastically scattered electrons is different depending on whether the elastic or inelastic scattering happens first, is there a top-bottom effect. We show that since inelastic scattering is concentrated in a narrow range of angles, much less than typical Bragg angles in light element materials, the inelastic and elastic processes are separable and, to a very good approximation, there is no top-bottom effect. For weakly scattering thin biological specimens that are phase objects the separation is exact and there can be no top-bottom effect.

特别是对于轻元素来说,非弹性散射比传递结构信息的弹性散射更有可能发生。由此产生的问题是,使用非弹性散射电子的图像是否会因弹性散射还是非弹性散射先发生而不同,是否存在上下效应。我们的研究表明,由于非弹性散射集中在较窄的角度范围内,远小于轻元素材料中典型的布拉格角,因此非弹性过程和弹性过程是可分离的,而且在很好的近似条件下,不存在上下效应。对于相物体的弱散射薄生物试样来说,分离是精确的,不可能存在顶底效应。
{"title":"Does the order of elastic and inelastic scattering affect an image or is there a top bottom effect from inelastic scattering?","authors":"Peter Rez","doi":"10.1016/j.ultramic.2023.113890","DOIUrl":"10.1016/j.ultramic.2023.113890","url":null,"abstract":"<div><p>Especially for light elements inelastic scattering is more probable than the elastic scattering that conveys the structural information. The question arises as to whether an image using inelastically scattered electrons is different depending on whether the elastic or inelastic scattering happens first, is there a top-bottom effect. We show that since inelastic scattering is concentrated in a narrow range of angles, much less than typical Bragg angles in light element materials, the inelastic and elastic processes are separable and, to a very good approximation, there is no top-bottom effect. For weakly scattering thin biological specimens that are phase objects the separation is exact and there can be no top-bottom effect.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138693087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlative atomic force microscopy and scanning electron microscopy of bacteria-diamond-metal nanocomposites 细菌-金刚石-金属纳米复合材料的相关原子力显微镜和扫描电子显微镜研究
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-14 DOI: 10.1016/j.ultramic.2023.113909
David Rutherford , Kateřina Kolářová , Jaroslav Čech , Petr Haušild , Jaroslav Kuliček , Egor Ukraintsev , Štěpán Stehlík , Radek Dao , Jan Neuman , Bohuslav Rezek

Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing E. coli bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further in-situ (EDS) and ex-situ (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.

目前,研究生物有机体与纳米材料之间的界面需要多方面的微观方法来阐明相互作用的机制和效果。在这里,我们描述了一种新的方法和方法,将原子力显微镜中的数据与扫描电子显微镜(AFM-in-SEM)相关联。该方法在当前生命科学研究中相关的细菌-金刚石-金属纳米复合材料样品上得到了验证。我们描述了一种制备这种多组分测试样品的程序,该样品含有大肠杆菌和壳聚糖包覆的氢化纳米金刚石,并在碳包覆的金网格上装饰银纳米颗粒。显微形貌(AFM)与来自同一感兴趣区域的化学、材料和形态信息(在不同加速电压下使用SE和BSE的SEM)相结合,并进行处理以创建三维相关探针电子显微镜(CPEM)图像。我们还建立了一种新的3D RGB彩色图像算法,用于将来自SEM的多个SE/BSE数据与AFM表面形貌相结合,从而提供有关金刚石-金属纳米复合材料与细菌微观相互作用的额外信息,这是单独分析无法实现的。CPEM数据解释方法由进一步的原位(EDS)和非原位(微拉曼)化学表征以及力体积AFM分析独立证实。我们还讨论了该方法在生命科学研究中的广泛适用性和益处。
{"title":"Correlative atomic force microscopy and scanning electron microscopy of bacteria-diamond-metal nanocomposites","authors":"David Rutherford ,&nbsp;Kateřina Kolářová ,&nbsp;Jaroslav Čech ,&nbsp;Petr Haušild ,&nbsp;Jaroslav Kuliček ,&nbsp;Egor Ukraintsev ,&nbsp;Štěpán Stehlík ,&nbsp;Radek Dao ,&nbsp;Jan Neuman ,&nbsp;Bohuslav Rezek","doi":"10.1016/j.ultramic.2023.113909","DOIUrl":"10.1016/j.ultramic.2023.113909","url":null,"abstract":"<div><p>Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing <em>E. coli</em> bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further <em>in-situ</em> (EDS) and <em>ex-situ</em> (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138631652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of a conical electrostatic objective lens of a low-voltage scanning electron microscope for surface imaging and analysis in ultra-high-vacuum environment 用于超高真空环境下表面成像和分析的低压扫描电子显微镜锥形静电物镜的设计与优化
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-12 DOI: 10.1016/j.ultramic.2023.113908
Jeong-Woong Lee , In-Yong Park , Takashi Ogawa

Low-voltage scanning electron microscopy (LV-SEM) with landing energies below 5 keV has been widely used due to its advantages in mitigating the damage and charging effects to a specimen and enhancing surface information due to small interaction volume of electrons inside a specimen. Additionally, for elemental analysis of the surfaces of bulk specimens with Auger electron spectroscopy (AES) or electron energy loss spectroscopy (EELS), ultra-high-vacuum (UHV) environment is essential to maintain clean surfaces without the absorption of gas molecules during the electron beam irradiation for the acquisition of spectral data. In this study, we propose the optimal design and condition of a conical Electrostatic Objective Lens (EOL) for a UHV LV-SEM to achieve the high spatial resolution and secondary electron (SE) detection efficiency. The EOL is composed of only the three electrodes (retarding, focusing and booster electrodes) and the insulators, which is suitable for maintaining a UHV environment with less out-gassing. The cone angle of the EOL is determined as 60° to integrate a spectrometer in the UHV LV-SEM and in a large size and a higher tilt angle of the sample. Through the optimization with the simulations, the EOL achieves the minimized spherical and chromatic aberration coefficients of 0.05 and 0.03 mm at the sample side, respectively, at the landing energy of 50 eV and the shortest working distance (WD) of 1 mm for high-resolution imaging. In addition, the probe diameter of the optimized EOL is 2.3 nm at 1 keV and 5.7 nm at 50 eV with a WD of 1 mm and a probe current of 10 pA, which are comparable to previously studied compound objective lenses with magnetic and electrostatic lenses. Using a longer WD of 4 mm for analysis, the probe diameter was 5.4 nm at 1 keV and the SE detection efficiency was 83.3 % owing to the separated scintillator detector structure from the booster electrode.

These results imply that the optimized EOL has the potential to be applied to a high-performance UHV LV-SEM for the surface imaging and analysis with a simple system configuration.

着陆能量低于5kev的低压扫描电子显微镜(LV-SEM)由于其在减轻对样品的损伤和充电效应以及样品内部电子相互作用体积小而增强表面信息等方面的优势而得到广泛应用。此外,对于使用俄歇电子能谱(AES)或电子能量损失能谱(EELS)对块状试样表面进行元素分析,在电子束照射获取光谱数据时,超高真空(UHV)环境对于保持表面清洁而不吸收气体分子是必不可少的。本研究提出了用于特高压LV-SEM的锥形静电物镜(EOL)的优化设计和条件,以实现高空间分辨率和二次电子(SE)检测效率。EOL仅由三个电极(缓速电极、聚焦电极和升压电极)和绝缘子组成,适用于维持特高压环境,排气较少。EOL的锥角为60度,用于在特高压LV-SEM中集成光谱仪,样品尺寸大,倾斜角度高。通过仿真优化,在着陆能量为50 eV时,EOL在样品侧的球差系数和色差系数分别为0.05和0.03 mm,在高分辨率成像时的最短工作距离(WD)为1 mm。此外,优化后的EOL在1 keV时探头直径为2.3 nm,在50 eV时探头直径为5.7 nm, WD为1 mm,探头电流为10 pA,与已有的磁性和静电透镜复合物镜相当。在1 keV下,探针直径为5.4 nm,采用与升压电极分离的闪烁体探测器结构,探测效率为83.3%。这些结果表明,优化后的EOL具有应用于高性能特高压LV-SEM表面成像和分析的潜力,系统配置简单。
{"title":"Design and optimization of a conical electrostatic objective lens of a low-voltage scanning electron microscope for surface imaging and analysis in ultra-high-vacuum environment","authors":"Jeong-Woong Lee ,&nbsp;In-Yong Park ,&nbsp;Takashi Ogawa","doi":"10.1016/j.ultramic.2023.113908","DOIUrl":"10.1016/j.ultramic.2023.113908","url":null,"abstract":"<div><p>Low-voltage scanning electron microscopy (LV-SEM) with landing energies below 5 keV has been widely used due to its advantages in mitigating the damage and charging effects to a specimen and enhancing surface information due to small interaction volume of electrons inside a specimen. Additionally, for elemental analysis of the surfaces of bulk specimens with Auger electron spectroscopy (AES) or electron energy loss spectroscopy (EELS), ultra-high-vacuum (UHV) environment is essential to maintain clean surfaces without the absorption of gas molecules during the electron beam irradiation for the acquisition of spectral data. In this study, we propose the optimal design and condition of a conical Electrostatic Objective Lens (EOL) for a UHV LV-SEM to achieve the high spatial resolution and secondary electron (SE) detection efficiency. The EOL is composed of only the three electrodes (retarding, focusing and booster electrodes) and the insulators, which is suitable for maintaining a UHV environment with less out-gassing. The cone angle of the EOL is determined as 60° to integrate a spectrometer in the UHV LV-SEM and in a large size and a higher tilt angle of the sample. Through the optimization with the simulations, the EOL achieves the minimized spherical and chromatic aberration coefficients of 0.05 and 0.03 mm at the sample side, respectively, at the landing energy of 50 eV and the shortest working distance (WD) of 1 mm for high-resolution imaging. In addition, the probe diameter of the optimized EOL is 2.3 nm at 1 keV and 5.7 nm at 50 eV with a WD of 1 mm and a probe current of 10 pA, which are comparable to previously studied compound objective lenses with magnetic and electrostatic lenses. Using a longer WD of 4 mm for analysis, the probe diameter was 5.4 nm at 1 keV and the SE detection efficiency was 83.3 % owing to the separated scintillator detector structure from the booster electrode.</p><p>These results imply that the optimized EOL has the potential to be applied to a high-performance UHV LV-SEM for the surface imaging and analysis with a simple system configuration.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399123002255/pdfft?md5=ee2a1dfc31900e3dae27b5f667d8081b&pid=1-s2.0-S0304399123002255-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Programmable comprehensive controller for multi-color 3D confocal spinning-disk image scanning microscope 用于多色三维共焦旋转盘图像扫描显微镜的可编程综合控制器
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-10 DOI: 10.1016/j.ultramic.2023.113888
Eli Flaxer , Lanna Bram , Alona Flaxer , Yael Roichman , Yuval Ebenstein

This paper introduces a compact, portable, and highly accurate triggering control system for a 3D confocal spinning-disk image scanning microscope (CSD-ISM). Building upon on our previously published research, we expanded the hardware of the controller and synchronized it with a sub-micron translator which scans the object in the z-direction. As well as expanding the hardware, the software also was extended from previously published work similarly as it is stated for hardware while allowing full control over the 3D movement. We showed a clear and smooth 3D image made up of a collection of 2D images at different heights.

本文为三维共焦旋转盘图像扫描显微镜(CSD-ISM)介绍了一种紧凑、便携、高精度的触发控制系统。在我们之前发表的研究基础上,我们扩展了控制器的硬件,并使其与亚微米级平移器同步,后者可在 Z 方向扫描物体。在扩展硬件的同时,我们还在以前发表的研究成果基础上对软件进行了类似的扩展,使其能够完全控制三维运动。我们展示了由不同高度的二维图像集合而成的清晰流畅的三维图像。
{"title":"Programmable comprehensive controller for multi-color 3D confocal spinning-disk image scanning microscope","authors":"Eli Flaxer ,&nbsp;Lanna Bram ,&nbsp;Alona Flaxer ,&nbsp;Yael Roichman ,&nbsp;Yuval Ebenstein","doi":"10.1016/j.ultramic.2023.113888","DOIUrl":"10.1016/j.ultramic.2023.113888","url":null,"abstract":"<div><p>This paper introduces a compact, portable, and highly accurate triggering control system for a 3D confocal spinning-disk image scanning microscope (CSD-ISM). Building upon on our previously published research, we expanded the hardware of the controller and synchronized it with a sub-micron translator which scans the object in the z-direction. As well as expanding the hardware, the software also was extended from previously published work similarly as it is stated for hardware while allowing full control over the 3D movement. We showed a clear and smooth 3D image made up of a collection of 2D images at different heights.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The target region focused imaging method for scanning ion conductance microscopy 扫描离子电导显微镜的靶区聚焦成像方法
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-09 DOI: 10.1016/j.ultramic.2023.113910
Shengbo Gu , Jian Zhuang , Tianying Wang , Shiting Hu , Weilun Song , Xiaobo Liao

Scanning ion conductance microscopy (SICM) has developed rapidly and has wide applications in biomedicine, single-cell science and other fields. SICM scanning speed is limited by the conventional raster-type scanning method, which spends most of time on imaging the substrate and does not focus enough on the target area. In order to solve this problem, a target region focused (TRF) method is proposed, which can effectively avoid the scanning of unnecessary substrate areas and enables SICM to image the target area only to achieve high-speed and effective local scanning. TRF method and conventional hopping mode scanning method are compared in the experiments using breast cancer cells and rat basophilic leukemia cells as experimental materials. It was demonstrated that our method can reduce the scanning time for a single sample image significantly without losing scanning information or compromising the quality of imaging. The TRF method developed in this paper can provide an efficient and fast scanning strategy for improving the imaging performance of SICM systems, which can be applied to the dynamic features of cell samples in the fields of biology and pharmacology analysis.

扫描离子电导显微镜(SICM)发展迅速,在生物医学、单细胞科学等领域有着广泛的应用。传统的光栅式扫描方法将大部分时间花在基底成像上,对目标区域的聚焦不够,从而限制了扫描离子电导显微镜的扫描速度。为了解决这个问题,我们提出了一种目标区域聚焦(TRF)方法,它能有效避免扫描不必要的基底区域,使 SICM 只对目标区域成像,从而实现高速、有效的局部扫描。以乳腺癌细胞和大鼠嗜碱性白血病细胞为实验材料,比较了 TRF 方法和传统跳模扫描方法。结果表明,我们的方法可以在不丢失扫描信息和不影响成像质量的情况下大大缩短单个样本图像的扫描时间。本文开发的 TRF 方法可为提高 SICM 系统的成像性能提供一种高效、快速的扫描策略,可应用于生物学和药理学分析领域细胞样本的动态特征。
{"title":"The target region focused imaging method for scanning ion conductance microscopy","authors":"Shengbo Gu ,&nbsp;Jian Zhuang ,&nbsp;Tianying Wang ,&nbsp;Shiting Hu ,&nbsp;Weilun Song ,&nbsp;Xiaobo Liao","doi":"10.1016/j.ultramic.2023.113910","DOIUrl":"10.1016/j.ultramic.2023.113910","url":null,"abstract":"<div><p>Scanning ion conductance microscopy (SICM) has developed rapidly and has wide applications in biomedicine, single-cell science and other fields. SICM scanning speed is limited by the conventional raster-type scanning method, which spends most of time on imaging the substrate and does not focus enough on the target area. In order to solve this problem, a target region focused (TRF) method is proposed, which can effectively avoid the scanning of unnecessary substrate areas and enables SICM to image the target area only to achieve high-speed and effective local scanning. TRF method and conventional hopping mode scanning method are compared in the experiments using breast cancer cells and rat basophilic leukemia cells as experimental materials. It was demonstrated that our method can reduce the scanning time for a single sample image significantly without losing scanning information or compromising the quality of imaging. The TRF method developed in this paper can provide an efficient and fast scanning strategy for improving the imaging performance of SICM systems, which can be applied to the dynamic features of cell samples in the fields of biology and pharmacology analysis.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138563822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-exposure diffraction pattern fusion applied to enable wider-angle transmission Kikuchi diffraction with direct electron detectors 应用多曝光衍射图样融合技术,利用直接电子探测器实现更广角的透射菊池衍射
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-07 DOI: 10.1016/j.ultramic.2023.113902
Tianbi Zhang, T.Ben Britton

Diffraction pattern analysis can be used to reveal the crystalline structure of materials, and this information is used to nano- and micro-structure of advanced engineering materials that enable modern life. For nano-structured materials typically diffraction pattern analysis is performed in the transmission electron microscope (TEM) and TEM diffraction patterns typically have a limited angular range (less than a few degrees) due to the long camera length, and this requires analysis of multiple patterns to probe a unit cell. As a different approach, wide angle Kikuchi patterns can be captured using an on-axis detector in the scanning electron microscope (SEM) with a shorter camera length. These ‘transmission Kikuchi diffraction’ (TKD) patterns present a direct projection of the unit cell and can be routinely analysed using EBSD-based methods and dynamical diffraction theory. In the present work, we enhance this analysis significantly and present a multi-exposure diffraction pattern fusion method that increases the dynamic range of the detected patterns captured with a Timepix3-based direct electron detector (DED). This method uses an easy-to-apply exposure fusion routine to collect data and extend the dynamic range, as well as normalise the intensity distribution within these very wide (>95°) angle patterns. The potential of this method is demonstrated with full diffraction sphere reprojection and highlight potential of the approach to rapidly probe the structure of nano-structured materials in the scanning electron microscope.

衍射图样分析可用于揭示材料的晶体结构,这些信息可用于先进工程材料的纳米和微观结构,从而为现代生活提供便利。对于纳米结构材料,衍射图样分析通常在透射电子显微镜(TEM)中进行,而 TEM 衍射图样由于相机长度较长,角度范围通常有限(小于几度),这就需要分析多个图样来探测一个单元晶胞。另一种方法是使用扫描电子显微镜(SEM)中的轴向探测器捕捉广角菊池衍射图样,相机长度较短。这些 "透射菊地衍射"(TKD)图案是单胞的直接投影,可以使用基于 EBSD 的方法和动态衍射理论进行常规分析。在本研究中,我们大大加强了这种分析,并提出了一种多曝光衍射图样融合方法,该方法提高了使用基于 Timepix3 的直接电子探测器(DED)捕获的检测图样的动态范围。该方法采用易于应用的曝光融合程序来收集数据,扩大动态范围,并对这些角度非常宽(95°)的图案中的强度分布进行归一化处理。通过全衍射球再投影演示了这种方法的潜力,并强调了这种方法在扫描电子显微镜中快速探测纳米结构材料结构的潜力。
{"title":"Multi-exposure diffraction pattern fusion applied to enable wider-angle transmission Kikuchi diffraction with direct electron detectors","authors":"Tianbi Zhang,&nbsp;T.Ben Britton","doi":"10.1016/j.ultramic.2023.113902","DOIUrl":"10.1016/j.ultramic.2023.113902","url":null,"abstract":"<div><p><span>Diffraction pattern<span> analysis can be used to reveal the crystalline structure of materials, and this information is used to nano- and micro-structure of advanced engineering materials that enable modern life. For nano-structured materials typically diffraction pattern analysis is performed in the transmission </span></span>electron microscope<span> (TEM) and TEM diffraction patterns typically have a limited angular range (less than a few degrees) due to the long camera length, and this requires analysis of multiple patterns to probe a unit cell. As a different approach, wide angle Kikuchi patterns can be captured using an on-axis detector in the scanning electron microscope (SEM) with a shorter camera length. These ‘transmission Kikuchi diffraction’ (TKD) patterns present a direct projection of the unit cell and can be routinely analysed using EBSD-based methods and dynamical diffraction theory. In the present work, we enhance this analysis significantly and present a multi-exposure diffraction pattern fusion method that increases the dynamic range of the detected patterns captured with a Timepix3-based direct electron detector (DED). This method uses an easy-to-apply exposure fusion routine to collect data and extend the dynamic range, as well as normalise the intensity distribution within these very wide (&gt;95°) angle patterns. The potential of this method is demonstrated with full diffraction sphere reprojection and highlight potential of the approach to rapidly probe the structure of nano-structured materials in the scanning electron microscope.</span></p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138545190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of fs-laser ablation parameter space for 2D/3D imaging of soft and hard materials by tri-beam microscopy 三束显微镜下软硬材料二维/三维成像fs激光烧蚀参数空间的探索
IF 2.2 3区 工程技术 Q1 Physics and Astronomy Pub Date : 2023-12-05 DOI: 10.1016/j.ultramic.2023.113903
A. Gholinia , J. Donoghue , A. Garner , M. Curd , M.J. Lawson , B. Winiarski , R. Geurts , P.J. Withers , T.L. Burnett

Tri-beam microscopes comprising a fs-laser beam, a Xe+ plasma focused ion beam (PFIB) and an electron beam all in one chamber open up exciting opportunities for site-specific correlative microscopy. They offer the possibility of rapid ablation and material removal by fs-laser, subsequent polishing by Xe-PFIB milling and electron imaging of the same area. While tri-beam systems are capable of probing large (mm) volumes providing high resolution microscopical characterisation of 2D and 3D images across exceptionally wide range of materials and biomaterials applications, presenting high quality/low damage surfaces to the electron beam can present a significant challenge, especially given the large parameter space for optimisation. Here the optimal conditions and artefacts associated with large scale volume milling, mini test piece manufacture, serial sectioning and surface polishing are investigated, both in terms of surface roughness and surface quality for metallic, ceramic, mixed complex phase, carbonaceous, and biological materials. This provides a good starting place for those wishing to examine large areas or volumes by tri-beam microscopy across a range of materials.

三束显微镜包括fs激光束,Xe+等离子体聚焦离子束(PFIB)和电子束都在一个腔室中,为特定部位的相关显微镜开辟了令人兴奋的机会。它们提供了通过fs激光快速烧蚀和材料去除的可能性,随后通过Xe-PFIB铣削和同一区域的电子成像进行抛光。虽然三束系统能够探测大(mm)的体积,在非常广泛的材料和生物材料应用中提供2D和3D图像的高分辨率微观特征,但向电子束呈现高质量/低损伤表面可能是一个重大挑战,特别是考虑到优化的大参数空间。本文从金属、陶瓷、混合复杂相、碳质和生物材料的表面粗糙度和表面质量两方面,研究了与大规模批量铣削、微型试样制造、连续切片和表面抛光相关的最佳条件和工件。这为那些希望通过三束显微镜检查大面积或体积的材料提供了一个很好的起点。
{"title":"Exploration of fs-laser ablation parameter space for 2D/3D imaging of soft and hard materials by tri-beam microscopy","authors":"A. Gholinia ,&nbsp;J. Donoghue ,&nbsp;A. Garner ,&nbsp;M. Curd ,&nbsp;M.J. Lawson ,&nbsp;B. Winiarski ,&nbsp;R. Geurts ,&nbsp;P.J. Withers ,&nbsp;T.L. Burnett","doi":"10.1016/j.ultramic.2023.113903","DOIUrl":"10.1016/j.ultramic.2023.113903","url":null,"abstract":"<div><p>Tri-beam microscopes comprising a fs-laser beam, a Xe+ plasma focused ion beam (PFIB) and an electron beam all in one chamber open up exciting opportunities for site-specific correlative microscopy. They offer the possibility of rapid ablation and material removal by fs-laser, subsequent polishing by Xe-PFIB milling and electron imaging of the same area. While tri-beam systems are capable of probing large (mm) volumes providing high resolution microscopical characterisation of 2D and 3D images across exceptionally wide range of materials and biomaterials applications, presenting high quality/low damage surfaces to the electron beam can present a significant challenge, especially given the large parameter space for optimisation. Here the optimal conditions and artefacts associated with large scale volume milling, mini test piece manufacture, serial sectioning and surface polishing are investigated, both in terms of surface roughness and surface quality for metallic, ceramic, mixed complex phase, carbonaceous, and biological materials. This provides a good starting place for those wishing to examine large areas or volumes by tri-beam microscopy across a range of materials.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399123002206/pdfft?md5=ef1794713bfe58475b5fe9964d85cb18&pid=1-s2.0-S0304399123002206-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138531067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultramicroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1