首页 > 最新文献

Ultramicroscopy最新文献

英文 中文
High precision orientation mapping from 4D-STEM precession electron diffraction data through quantitative analysis of diffracted intensities 通过对衍射强度进行定量分析,从 4D-STEM 前序电子衍射数据中绘制高精度方向图
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-01-24 DOI: 10.1016/j.ultramic.2024.113927
Leonardo M. Corrêa , Eduardo Ortega , Arturo Ponce , Mônica A. Cotta , Daniel Ugarte

The association of scanning transmission electron microscopy (STEM) and detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of materials using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to x-ray structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (∼0.03°), much lower than the traditional ACOM based on pattern matching algorithms (∼1°). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.

将扫描透射电子显微镜(STEM)与每个探针位置的衍射图样检测相结合(即所谓的 4D-STEM),是以纳米分辨率和低辐照水平分析材料结构特性的最有前途的方法之一。这种方法被广泛应用于使用自动晶体取向图(ACOM)对材料进行纹理分析。在此,我们利用轴向 CMOS 摄像机获取的前序电子衍射 (PED) 图形,对 InP 纳米线进行了取向测绘。通过对衍射强度的定量分析,将实验与模拟的残差最小化,从而确定每个探针位置的晶体取向。我们的模拟基于双光束动态衍射近似,角度精度高(∼0.03°),远低于基于模式匹配算法的传统 ACOM(∼1°)。我们预计,同时探索光斑位置和高精度晶体错向将使基于 PED 的 4D-STEM 在表征纳米材料形变场方面的全部潜力得到发掘。
{"title":"High precision orientation mapping from 4D-STEM precession electron diffraction data through quantitative analysis of diffracted intensities","authors":"Leonardo M. Corrêa ,&nbsp;Eduardo Ortega ,&nbsp;Arturo Ponce ,&nbsp;Mônica A. Cotta ,&nbsp;Daniel Ugarte","doi":"10.1016/j.ultramic.2024.113927","DOIUrl":"10.1016/j.ultramic.2024.113927","url":null,"abstract":"<div><p>The association of scanning transmission electron microscopy (STEM) and detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of materials using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to x-ray structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (∼0.03°), much lower than the traditional ACOM based on pattern matching algorithms (∼1°). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113927"},"PeriodicalIF":2.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139555548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accurate and fast localization of EBSD pattern centers for screen moving technology 为屏幕移动技术准确快速地定位 EBSD 图案中心
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-01-20 DOI: 10.1016/j.ultramic.2024.113924
Wei Li , Xingui Zhou , Jingchao Xu , Ruyue Zhang , Lizhao Lai , Yi Zeng , Hong Miao

The authors of this study develop an accurate and fast method for the localization of the pattern centers (PCs) in the electron backscatter diffraction (EBSD) technique by using the model of deformation of screen moving technology. The proposed algorithm is divided into two steps: (a) Approximation: We use collinear feature points to obtain the initial value of the coordinates of the PC and the zoom factor. (b) Subdivision: We then construct a deformation function containing the three parameters to be solved, select a large region for global registration, use the inverse compositional Gauss–Newton (ICGN) to optimize the objective function, and obtain the results of iteration of the PC and the zoom factor. The proposed algorithm was applied to simulated patterns, and yielded an accuracy of measurement of the PCs that was better than 4.6×106 of their resolution while taking only 0.2 s for computations. Moreover, the proposed algorithm has a large radius of convergence that makes it robust to the initial estimate. We also discuss the influence of factors of mechanical instability on its results of calibration during the insertion of the detector, and show that errors in measurements caused by the tilt motion of the camera are related only to the tilt angle of its motion and the detector distance, and are unrelated to the distance moved by it.

本研究的作者利用屏幕移动技术的变形模型,开发了一种准确而快速的方法,用于电子背散射衍射(EBSD)技术中图案中心(PC)的定位。所提出的算法分为两个步骤:(a) 近似:我们利用共线特征点获得 PC 坐标的初始值和缩放因子。(b) 细分:然后构建一个包含三个待解参数的变形函数,选择一个大区域进行全局配准,使用逆合成高斯-牛顿(ICGN)优化目标函数,并获得 PC 和缩放因子的迭代结果。所提出的算法被应用于模拟图案,其 PC 的测量精度优于其分辨率的 4.6×10-6,而计算时间仅为 0.2 秒。此外,所提出的算法具有较大的收敛半径,使其对初始估计具有鲁棒性。我们还讨论了在探测器插入过程中机械不稳定性因素对校准结果的影响,并表明摄像机倾斜运动造成的测量误差只与摄像机运动的倾斜角度和探测器距离有关,而与摄像机移动的距离无关。
{"title":"Accurate and fast localization of EBSD pattern centers for screen moving technology","authors":"Wei Li ,&nbsp;Xingui Zhou ,&nbsp;Jingchao Xu ,&nbsp;Ruyue Zhang ,&nbsp;Lizhao Lai ,&nbsp;Yi Zeng ,&nbsp;Hong Miao","doi":"10.1016/j.ultramic.2024.113924","DOIUrl":"10.1016/j.ultramic.2024.113924","url":null,"abstract":"<div><p>The authors of this study develop an accurate and fast method for the localization of the pattern centers (PCs) in the electron backscatter diffraction (EBSD) technique by using the model of deformation of screen moving technology. The proposed algorithm is divided into two steps: (a) Approximation: We use collinear feature points to obtain the initial value of the coordinates of the PC and the zoom factor. (b) Subdivision: We then construct a deformation function containing the three parameters to be solved, select a large region for global registration, use the inverse compositional Gauss–Newton (ICGN) to optimize the objective function, and obtain the results of iteration of the PC and the zoom factor. The proposed algorithm was applied to simulated patterns, and yielded an accuracy of measurement of the PCs that was better than <span><math><mrow><mn>4.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></math></span> of their resolution while taking only 0.2 s for computations. Moreover, the proposed algorithm has a large radius of convergence that makes it robust to the initial estimate. We also discuss the influence of factors of mechanical instability on its results of calibration during the insertion of the detector, and show that errors in measurements caused by the tilt motion of the camera are related only to the tilt angle of its motion and the detector distance, and are unrelated to the distance moved by it.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113924"},"PeriodicalIF":2.2,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139516628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of the mechanical properties of the cortex region of human hair fibers by multiparametric atomic force microscopy mapping 通过多参数原子力显微镜绘图表征人类毛发纤维皮层区域的机械特性
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-01-16 DOI: 10.1016/j.ultramic.2024.113925
Raissa Lima de Oblitas , Flávio Bueno de Camargo Junior , Wagner Vidal Magalhães , Fernanda de Sá Teixeira , Maria Cecília Salvadori

We show the benefit of the use of atomic force microscopy (AFM) in spectroscopy force mode (FV: force volume) for evaluation of the cosmetic active effectiveness in improving the mechanical properties of human hair fibers cortex region. For this, we characterized human hair fibers without and with chemical damage caused by bleaching process. Fiber and resin (embedding material) data were obtained simultaneously in the mapping in order to have the resin data as a reference to ensure a coherent comparison between data from the different fiber groups. Our AFM results, which were evaluated using statistical tests, demonstrated the degradation of fibers after bleaching, corroborating the findings of transmission electron microscopy analysis and the effectiveness of a cosmetic active ingredient in improving the Young's modulus (elastic modulus) (E) of the damaged fibers. We also found a radial decrease in the natural logarithm of Young's modulus ln(E) along the cross-section of the active group fiber, which is compatible with confocal Raman spectroscopy analysis by other authors, demonstrating variation of the active permeation with depth. We note that Young's modulus was also determined by a tensile tester (macro-scale technique), in which it was not possible to obtain statistically significant differences between the groups, evidencing the advantage of the FV-AFM analysis. We also found an increase in ln(E) accompanied by a decrease in maximum adhesion force between tip and sample (negative Pearson correlation coefficient). This result can be explained by the fact that structures composed of hydrophobic components have a higher Young's modulus than structures composed of hydrophilic components.

  • Bleaching damage and cosmetic hair treatment assessed by AFM, TEM, and tensile tester.

  • Young's modulus by AFM nanoindentation of hair fibers monitored by sample standard.

  • Young's modulus changes radially along the cross-section due to the cosmetic active.

  • AFM data show statistically significant differences among sample groups.

  • Tensile tester was not able to show statistically significant differences.

我们展示了在光谱力模式(FV:力体积)下使用原子力显微镜(AFM)评估化妆品活性成分在改善人类头发纤维皮质区域机械性能方面的功效。为此,我们对未漂白和漂白过程造成化学损伤的人类头发纤维进行了表征。在制图过程中,我们同时获得了纤维和树脂(包埋材料)的数据,以便以树脂数据为参考,确保对不同纤维组的数据进行连贯的比较。我们的原子力显微镜结果(通过统计检验进行评估)表明,漂白后纤维发生了降解,证实了透射电子显微镜分析的结果,以及化妆品活性成分在改善受损纤维的杨氏模量(弹性模量)(E)方面的有效性。我们还发现杨氏模量的自然对数 ln(E) 沿活性组纤维横截面呈径向下降,这与其他作者的共焦拉曼光谱分析结果一致,表明活性渗透随深度的变化而变化。我们注意到,杨氏模量也是通过拉伸试验机(宏观尺度技术)测定的,在拉伸试验机中,各组之间无法获得显著的统计学差异,这证明了 FV-AFM 分析的优势。我们还发现,ln(E) 的增加伴随着针尖与样品之间最大粘附力的降低(负皮尔逊相关系数)。通过原子力显微镜、TEM 和拉伸试验机评估漂白损伤和头发美容处理-通过原子力显微镜纳米压痕检测头发纤维的杨氏模量-通过样品标准监测杨氏模量-杨氏模量沿横截面径向变化,这是化妆品活性的结果-原子力显微镜数据显示各样品组之间存在显著的统计学差异-拉伸试验机无法显示显著的统计学差异。
{"title":"Characterization of the mechanical properties of the cortex region of human hair fibers by multiparametric atomic force microscopy mapping","authors":"Raissa Lima de Oblitas ,&nbsp;Flávio Bueno de Camargo Junior ,&nbsp;Wagner Vidal Magalhães ,&nbsp;Fernanda de Sá Teixeira ,&nbsp;Maria Cecília Salvadori","doi":"10.1016/j.ultramic.2024.113925","DOIUrl":"10.1016/j.ultramic.2024.113925","url":null,"abstract":"<div><p><span><span>We show the benefit of the use of atomic force microscopy (AFM) in spectroscopy force mode (FV: force volume) for evaluation of the cosmetic active effectiveness in improving the </span>mechanical properties<span><span> of human hair fibers cortex region. For this, we characterized human hair fibers without and with chemical damage caused by bleaching process. Fiber and resin (embedding material) data were obtained simultaneously in the mapping in order to have the resin data as a reference to ensure a coherent comparison between data from the different fiber groups. Our AFM results, which were evaluated using statistical tests, demonstrated the degradation of fibers after bleaching, corroborating the findings of transmission electron microscopy analysis and the effectiveness of a cosmetic active ingredient in improving the </span>Young's modulus (elastic modulus) (</span></span><span><math><mi>E</mi></math></span>) of the damaged fibers. We also found a radial decrease in the natural logarithm of Young's modulus ln(<span><math><mi>E</mi></math></span><span>) along the cross-section of the active group fiber, which is compatible with confocal Raman spectroscopy analysis by other authors, demonstrating variation of the active permeation with depth. We note that Young's modulus was also determined by a tensile tester (macro-scale technique), in which it was not possible to obtain statistically significant differences between the groups, evidencing the advantage of the FV-AFM analysis. We also found an increase in ln(</span><span><math><mi>E</mi></math></span>) accompanied by a decrease in maximum adhesion force between tip and sample (negative Pearson correlation coefficient). This result can be explained by the fact that structures composed of hydrophobic components have a higher Young's modulus than structures composed of hydrophilic components.</p><ul><li><span>•</span><span><p>Bleaching damage and cosmetic hair treatment assessed by AFM, TEM, and tensile tester.</p></span></li><li><span>•</span><span><p>Young's modulus by AFM nanoindentation of hair fibers monitored by sample standard.</p></span></li><li><span>•</span><span><p>Young's modulus changes radially along the cross-section due to the cosmetic active.</p></span></li><li><span>•</span><span><p>AFM data show statistically significant differences among sample groups.</p></span></li><li><span>•</span><span><p>Tensile tester was not able to show statistically significant differences.</p></span></li></ul></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"259 ","pages":"Article 113925"},"PeriodicalIF":2.2,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase offset method of ptychographic contrast reversal correction 相位偏移法的分色反差校正
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2024-01-08 DOI: 10.1016/j.ultramic.2024.113922
Christoph Hofer, Chuang Gao, Tamazouzt Chennit, Biao Yuan, Timothy J. Pennycook

The contrast transfer function of direct ptychography methods such as the single side band (SSB) method are single signed, yet these methods still sometimes exhibit contrast reversals, most often where the projected potentials are strong. In thicker samples central focusing often provides the best ptychographic contrast as this leads to defocus variations within the sample canceling out. However focusing away from the entrance surface is often undesirable as this degrades the annular dark field (ADF) signal. Here we discuss how phase wrap asymptotes in the frequency response of SSB ptychography give rise to contrast reversals, without the need for dynamical scattering, and how these can be counteracted by manipulating the phases such that the asymptotes are either shifted to higher frequencies or damped via amplitude modulation. This is what enables post collection defocus correction of contrast reversals. However, the phase offset method of counteracting contrast reversals we introduce here is generally found to be superior to post collection application of defocus, with greater reliability and generally stronger contrast. Importantly, the phase offset method also works for thin and thick samples where central focusing does not. Finally, the independence of the method from focus is useful for optical sectioning involving ptychography, improving interpretability by better disentangling the effects of strong potentials and focus.

单边带(SSB)法等直接纵切法的对比度传递函数是单符号的,但这些方法有时仍会出现对比度反转,最常见的情况是投射电势较强。在较厚的样品中,中央聚焦通常能提供最佳的双曲面对比度,因为这会抵消样品内部的散焦变化。然而,远离入口表面的聚焦往往不可取,因为这会降低环形暗场(ADF)信号。在此,我们将讨论 SSB 层析成像技术频率响应中的相位包络渐近线是如何在不需要动态散射的情况下导致对比度反转的,以及如何通过操纵相位使渐近线移向更高频率或通过振幅调制抑制渐近线来抵消对比度反转。这就是实现对比度反转的采集后失焦校正的方法。然而,我们在此介绍的相位偏移方法在抵消对比度反转方面普遍优于采集后去焦,可靠性更高,对比度普遍更强。重要的是,相位偏移法还适用于薄而厚的样本,而中心聚焦法则不适用。最后,相位偏移法与聚焦无关,这对于涉及分层摄影的光学切片非常有用,它能更好地分离强电位和聚焦的影响,从而提高可解释性。
{"title":"Phase offset method of ptychographic contrast reversal correction","authors":"Christoph Hofer,&nbsp;Chuang Gao,&nbsp;Tamazouzt Chennit,&nbsp;Biao Yuan,&nbsp;Timothy J. Pennycook","doi":"10.1016/j.ultramic.2024.113922","DOIUrl":"10.1016/j.ultramic.2024.113922","url":null,"abstract":"<div><p>The contrast transfer function of direct ptychography methods such as the single side band (SSB) method are single signed, yet these methods still sometimes exhibit contrast reversals, most often where the projected potentials are strong. In thicker samples central focusing often provides the best ptychographic contrast as this leads to defocus variations within the sample canceling out. However focusing away from the entrance surface is often undesirable as this degrades the annular dark field (ADF) signal. Here we discuss how phase wrap asymptotes in the frequency response of SSB ptychography give rise to contrast reversals, without the need for dynamical scattering, and how these can be counteracted by manipulating the phases such that the asymptotes are either shifted to higher frequencies or damped via amplitude modulation. This is what enables post collection defocus correction of contrast reversals. However, the phase offset method of counteracting contrast reversals we introduce here is generally found to be superior to post collection application of defocus, with greater reliability and generally stronger contrast. Importantly, the phase offset method also works for thin and thick samples where central focusing does not. Finally, the independence of the method from focus is useful for optical sectioning involving ptychography, improving interpretability by better disentangling the effects of strong potentials and focus.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"258 ","pages":"Article 113922"},"PeriodicalIF":2.2,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000019/pdfft?md5=252f4115db9a421645fc1ecee48bc6fc&pid=1-s2.0-S0304399124000019-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recovery of spatial frequencies in coherent diffraction imaging in the presence of a central obscuration 中心遮挡下相干衍射成像中空间频率的恢复
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2023-12-29 DOI: 10.1016/j.ultramic.2023.113912
Atoosa Dejkameh , Ricarda Nebling , Uldis Locans , Hyun-Su Kim , Iacopo Mochi , Yasin Ekinci

Coherent diffraction imaging (CDI) and its scanning version, ptychography, are lensless imaging approaches used to iteratively retrieve a sample’s complex scattering amplitude from its measured diffraction patterns. These imaging methods are most useful in extreme ultraviolet (EUV) and X-ray regions of the electromagnetic spectrum, where efficient imaging optics are difficult to manufacture. CDI relies on high signal-to-noise ratio diffraction data to recover the phase, but increasing the flux can cause saturation effects on the detector. A conventional solution to this problem is to place a beam stop in front of the detector. The pixel masking method is a common solution to the problem of missing frequencies due to a beam stop. This paper describes the information redundancy in the recorded data set and expands on how the reconstruction algorithm can exploit this redundancy to estimate the missing frequencies. Thereafter, we modify the size of the beam stop in experimental and simulation data to assess the impact of the missing frequencies, investigate the extent to which the lost portion of the diffraction spectrum can be recovered, and quantify the effect of the beam stop on the image quality. The experimental findings and simulations conducted for EUV imaging demonstrate that when using a beam stop, the numerical aperture of the condenser is a crucial factor in the recovery of lost frequencies. Our thorough investigation of the reconstructed images provides information on the overall quality of reconstruction and highlights the vulnerable frequencies if the beam stop size is larger than the extent of the illumination NA. The outcome of this study can be applied to other sources of frequency loss, and it will contribute to the improvement of experiments and reconstruction algorithms in CDI.

相干衍射成像(CDI)及其扫描版本 "ptychography "是一种无透镜成像方法,用于从测量的衍射图样中迭代检索样品的复合散射振幅。这些成像方法在电磁波谱的极紫外(EUV)和 X 射线区域最为有用,因为在这些区域很难制造出高效的成像光学器件。CDI 依靠高信噪比的衍射数据来恢复相位,但增加通量会对探测器造成饱和效应。解决这一问题的传统方法是在探测器前放置光束挡板。像素掩蔽法是解决因光束阻挡而导致频率缺失问题的常用方法。本文描述了记录数据集中的信息冗余,并阐述了重建算法如何利用这种冗余来估计缺失的频率。之后,我们修改了实验和模拟数据中光束停止点的大小,以评估缺失频率的影响,研究衍射谱丢失部分的恢复程度,并量化光束停止点对图像质量的影响。针对超紫外成像进行的实验结果和模拟证明,在使用光束止挡时,聚光器的数值孔径是恢复丢失频率的关键因素。我们对重建图像的深入研究提供了有关重建整体质量的信息,并突出显示了如果光束止挡尺寸大于照明 NA 范围时易受影响的频率。这项研究的结果可应用于其他频率损失源,并将有助于改进 CDI 中的实验和重建算法。
{"title":"Recovery of spatial frequencies in coherent diffraction imaging in the presence of a central obscuration","authors":"Atoosa Dejkameh ,&nbsp;Ricarda Nebling ,&nbsp;Uldis Locans ,&nbsp;Hyun-Su Kim ,&nbsp;Iacopo Mochi ,&nbsp;Yasin Ekinci","doi":"10.1016/j.ultramic.2023.113912","DOIUrl":"10.1016/j.ultramic.2023.113912","url":null,"abstract":"<div><p>Coherent diffraction imaging (CDI) and its scanning version, ptychography, are lensless imaging approaches used to iteratively retrieve a sample’s complex scattering amplitude from its measured diffraction patterns. These imaging methods are most useful in extreme ultraviolet (EUV) and X-ray regions of the electromagnetic spectrum, where efficient imaging optics are difficult to manufacture. CDI relies on high signal-to-noise ratio diffraction data to recover the phase, but increasing the flux can cause saturation effects on the detector. A conventional solution to this problem is to place a beam stop in front of the detector. The pixel masking method is a common solution to the problem of missing frequencies due to a beam stop. This paper describes the information redundancy in the recorded data set and expands on how the reconstruction algorithm can exploit this redundancy to estimate the missing frequencies. Thereafter, we modify the size of the beam stop in experimental and simulation data to assess the impact of the missing frequencies, investigate the extent to which the lost portion of the diffraction spectrum can be recovered, and quantify the effect of the beam stop on the image quality. The experimental findings and simulations conducted for EUV imaging demonstrate that when using a beam stop, the numerical aperture of the condenser is a crucial factor in the recovery of lost frequencies. Our thorough investigation of the reconstructed images provides information on the overall quality of reconstruction and highlights the vulnerable frequencies if the beam stop size is larger than the extent of the illumination NA. The outcome of this study can be applied to other sources of frequency loss, and it will contribute to the improvement of experiments and reconstruction algorithms in CDI.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"258 ","pages":"Article 113912"},"PeriodicalIF":2.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399123002292/pdfft?md5=0efa39d677d72d406052ce188a5a96ca&pid=1-s2.0-S0304399123002292-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point field emission electron source with a magnetically focused electron beam 带有磁聚焦电子束的点场发射电子源
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2023-12-21 DOI: 10.1016/j.ultramic.2023.113911
Paweł Urbański, Piotr Szyszka, Marcin Białas, Tomasz Grzebyk

This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.

本文介绍了一种场发射器,其形式是在硅尖上覆盖一层碳纳米管。发射的光束通过一组两个静电透镜和磁场聚焦,这在此类结构中尚属首次。所提出的方法取得了非常有前景的结果。场发射器能够提供较高的发射电流(约 50 µA)和均匀的小光斑光束。这种电子源是许多微型微机电系统和纳米电子器件的必要组成部分。该电子源特别适用于目前开发的微机电系统 X 射线源和微机电系统电子显微镜。
{"title":"Point field emission electron source with a magnetically focused electron beam","authors":"Paweł Urbański, Piotr Szyszka, Marcin Białas, Tomasz Grzebyk","doi":"10.1016/j.ultramic.2023.113911","DOIUrl":"https://doi.org/10.1016/j.ultramic.2023.113911","url":null,"abstract":"<p>This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.</p>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"17 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point field emission electron source with a magnetically focused electron beam 带有磁聚焦电子束的点场发射电子源
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2023-12-21 DOI: 10.1016/j.ultramic.2023.113911
Paweł Urbański, Piotr Szyszka, Marcin Białas, Tomasz Grzebyk

This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.

本文介绍了一种场发射器,其形式是在硅尖上覆盖一层碳纳米管。发射的光束通过一组两个静电透镜和磁场聚焦,这在此类结构中尚属首次。所提出的方法取得了非常有前景的结果。场发射器能够提供较高的发射电流(约 50 µA)和均匀的小光斑光束。这种电子源是许多微型微机电系统和纳米电子器件的必要组成部分。该电子源特别适用于目前开发的微机电系统 X 射线源和微机电系统电子显微镜。
{"title":"Point field emission electron source with a magnetically focused electron beam","authors":"Paweł Urbański,&nbsp;Piotr Szyszka,&nbsp;Marcin Białas,&nbsp;Tomasz Grzebyk","doi":"10.1016/j.ultramic.2023.113911","DOIUrl":"10.1016/j.ultramic.2023.113911","url":null,"abstract":"<div><p>This paper presents a field emitter in the form of a silicon tip covered with a layer of carbon nanotubes. The emitted beam is focused with a set of two electrostatic lenses and – which is novelty in such structures – with a magnetic field. The presented approach gave very promising results. The field emitter was able to provide a high emission current (about 50 µA) and a beam with a small and homogeneous spot. Such electron sources are necessary components of many miniature MEMS and nanoelectronics devices. The presented source is dedicated especially for the use in currently developed MEMS X-ray sources and MEMS electron microscopes.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"258 ","pages":"Article 113911"},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139024565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generational assessment of EBSD detectors for cross-correlation-based analysis: From scintillators to direct detection 基于交叉相关分析的 EBSD 探测器的世代评估:从闪烁体到直接探测
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2023-12-21 DOI: 10.1016/j.ultramic.2023.113913
Josephine DeRonja , Matthew Nowell , Stuart Wright , Josh Kacher

Introduced over ten years ago, cross-correlation-based electron backscatter diffraction has enabled high precision measurements of crystallographic rotations and elastic strain gradients at high spatial resolution. Since that time, there have been remarkable improvements in electron detector technology, including the advent of ultra-high speed detectors and the commercialization of direct detectors. In this study, we assess the efficacy of multiple generations of electron detectors for cross-correlation-based analysis using a single crystal Si sample as a reference. We show that, while improvements in precision are modest, there have been significant gains in the rate at which high-quality diffraction patterns can be collected. This has important implications in the size of datasets that can be collected and reduces the impact of drift and sample contamination.

基于交叉相关的电子反向散射衍射技术于十多年前问世,可以在高空间分辨率下对晶体旋转和弹性应变梯度进行高精度测量。从那时起,电子探测器技术有了显著的进步,包括超高速探测器的出现和直接探测器的商业化。在本研究中,我们以单晶硅样品为基准,评估了多代电子探测器在基于交叉相关分析中的功效。我们的研究表明,虽然在精度方面的改进不大,但在高质量衍射图样的采集速度方面却有显著提高。这对可收集的数据集的大小具有重要影响,并可减少漂移和样品污染的影响。
{"title":"Generational assessment of EBSD detectors for cross-correlation-based analysis: From scintillators to direct detection","authors":"Josephine DeRonja ,&nbsp;Matthew Nowell ,&nbsp;Stuart Wright ,&nbsp;Josh Kacher","doi":"10.1016/j.ultramic.2023.113913","DOIUrl":"10.1016/j.ultramic.2023.113913","url":null,"abstract":"<div><p>Introduced over ten years ago, cross-correlation-based electron backscatter diffraction has enabled high precision measurements of crystallographic rotations and elastic strain gradients at high spatial resolution. Since that time, there have been remarkable improvements in electron detector technology, including the advent of ultra-high speed detectors and the commercialization of direct detectors. In this study, we assess the efficacy of multiple generations of electron detectors for cross-correlation-based analysis using a single crystal Si sample as a reference. We show that, while improvements in precision are modest, there have been significant gains in the rate at which high-quality diffraction patterns can be collected. This has important implications in the size of datasets that can be collected and reduces the impact of drift and sample contamination.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"257 ","pages":"Article 113913"},"PeriodicalIF":2.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139031252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does the order of elastic and inelastic scattering affect an image or is there a top bottom effect from inelastic scattering? 弹性散射和非弹性散射的顺序是否会影响图像,或者非弹性散射是否会产生自上而下的效应?
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2023-12-14 DOI: 10.1016/j.ultramic.2023.113890
Peter Rez

Especially for light elements inelastic scattering is more probable than the elastic scattering that conveys the structural information. The question arises as to whether an image using inelastically scattered electrons is different depending on whether the elastic or inelastic scattering happens first, is there a top-bottom effect. We show that since inelastic scattering is concentrated in a narrow range of angles, much less than typical Bragg angles in light element materials, the inelastic and elastic processes are separable and, to a very good approximation, there is no top-bottom effect. For weakly scattering thin biological specimens that are phase objects the separation is exact and there can be no top-bottom effect.

特别是对于轻元素来说,非弹性散射比传递结构信息的弹性散射更有可能发生。由此产生的问题是,使用非弹性散射电子的图像是否会因弹性散射还是非弹性散射先发生而不同,是否存在上下效应。我们的研究表明,由于非弹性散射集中在较窄的角度范围内,远小于轻元素材料中典型的布拉格角,因此非弹性过程和弹性过程是可分离的,而且在很好的近似条件下,不存在上下效应。对于相物体的弱散射薄生物试样来说,分离是精确的,不可能存在顶底效应。
{"title":"Does the order of elastic and inelastic scattering affect an image or is there a top bottom effect from inelastic scattering?","authors":"Peter Rez","doi":"10.1016/j.ultramic.2023.113890","DOIUrl":"10.1016/j.ultramic.2023.113890","url":null,"abstract":"<div><p>Especially for light elements inelastic scattering is more probable than the elastic scattering that conveys the structural information. The question arises as to whether an image using inelastically scattered electrons is different depending on whether the elastic or inelastic scattering happens first, is there a top-bottom effect. We show that since inelastic scattering is concentrated in a narrow range of angles, much less than typical Bragg angles in light element materials, the inelastic and elastic processes are separable and, to a very good approximation, there is no top-bottom effect. For weakly scattering thin biological specimens that are phase objects the separation is exact and there can be no top-bottom effect.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"257 ","pages":"Article 113890"},"PeriodicalIF":2.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138693087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlative atomic force microscopy and scanning electron microscopy of bacteria-diamond-metal nanocomposites 细菌-金刚石-金属纳米复合材料的相关原子力显微镜和扫描电子显微镜研究
IF 2.2 3区 工程技术 Q2 MICROSCOPY Pub Date : 2023-12-14 DOI: 10.1016/j.ultramic.2023.113909
David Rutherford , Kateřina Kolářová , Jaroslav Čech , Petr Haušild , Jaroslav Kuliček , Egor Ukraintsev , Štěpán Stehlík , Radek Dao , Jan Neuman , Bohuslav Rezek

Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing E. coli bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further in-situ (EDS) and ex-situ (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.

目前,研究生物有机体与纳米材料之间的界面需要多方面的微观方法来阐明相互作用的机制和效果。在这里,我们描述了一种新的方法和方法,将原子力显微镜中的数据与扫描电子显微镜(AFM-in-SEM)相关联。该方法在当前生命科学研究中相关的细菌-金刚石-金属纳米复合材料样品上得到了验证。我们描述了一种制备这种多组分测试样品的程序,该样品含有大肠杆菌和壳聚糖包覆的氢化纳米金刚石,并在碳包覆的金网格上装饰银纳米颗粒。显微形貌(AFM)与来自同一感兴趣区域的化学、材料和形态信息(在不同加速电压下使用SE和BSE的SEM)相结合,并进行处理以创建三维相关探针电子显微镜(CPEM)图像。我们还建立了一种新的3D RGB彩色图像算法,用于将来自SEM的多个SE/BSE数据与AFM表面形貌相结合,从而提供有关金刚石-金属纳米复合材料与细菌微观相互作用的额外信息,这是单独分析无法实现的。CPEM数据解释方法由进一步的原位(EDS)和非原位(微拉曼)化学表征以及力体积AFM分析独立证实。我们还讨论了该方法在生命科学研究中的广泛适用性和益处。
{"title":"Correlative atomic force microscopy and scanning electron microscopy of bacteria-diamond-metal nanocomposites","authors":"David Rutherford ,&nbsp;Kateřina Kolářová ,&nbsp;Jaroslav Čech ,&nbsp;Petr Haušild ,&nbsp;Jaroslav Kuliček ,&nbsp;Egor Ukraintsev ,&nbsp;Štěpán Stehlík ,&nbsp;Radek Dao ,&nbsp;Jan Neuman ,&nbsp;Bohuslav Rezek","doi":"10.1016/j.ultramic.2023.113909","DOIUrl":"10.1016/j.ultramic.2023.113909","url":null,"abstract":"<div><p>Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing <em>E. coli</em> bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further <em>in-situ</em> (EDS) and <em>ex-situ</em> (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"258 ","pages":"Article 113909"},"PeriodicalIF":2.2,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138631652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ultramicroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1