Pub Date : 2024-11-16DOI: 10.1016/j.seppur.2024.130577
Minhua Li, Saeed Askari, Yingjie Niu, Ting Li, Ali Zavabeti, Masood S. Alivand, Kathryn A. Mumford, Chao’en Li, Rui Zhang
The application of solid-acid catalysts in the regeneration process of CO2-rich amine solutions is currently considered as a promising method for reducing the relative heat duty of CO2 capture processes. In this study, sepiolite (SEP) was selected as a cost-efficient catalyst carrier to support the solid superacid SO42-/ZrO2 (SZ) for preparing a series of composite SO42−/ZrO2‑SEP (SZ@SEP) catalysts with different SZ/SEP ratios. The physical–chemical properties of the prepared catalysts were carefully studied using various characterization techniques. The catalytic CO2 desorption performance was tested in the conventional 5 M MEA solution at 88 °C. The amount of desorbed CO2, desorption rate and relative heat duty were accurately measured for each catalyst and a potential catalytic reaction mechanism was proposed. The results indicated that all catalysts significantly enhanced CO2 desorption performance. Specifically, SZ@SEP-1/2 achieved a 37.3 % increase in average desorption rate and a 48.6 % decrease in heat duty compared to the blank solvent. Furthermore, SZ@SEP-1/2 demonstrated excellent stability over 20 cycles, suggesting its potential as an energy-efficient catalyst for CO2 capture.
目前,在富含二氧化碳的胺溶液再生过程中应用固体酸催化剂被认为是降低二氧化碳捕集过程相对热负荷的一种可行方法。本研究选择了海泡石(SEP)作为一种具有成本效益的催化剂载体,用于支撑固体超酸 SO42-/ZrO2(SZ),制备了一系列具有不同 SZ/SEP 比的 SO42-/ZrO2-SEP 复合催化剂(SZ@SEP)。利用各种表征技术对所制备催化剂的物理化学性质进行了仔细研究。在 88 °C 的常规 5 MEA 溶液中测试了催化 CO2 解吸性能。精确测量了每种催化剂的二氧化碳解吸量、解吸速率和相对热负荷,并提出了潜在的催化反应机理。结果表明,所有催化剂都能显著提高二氧化碳的解吸性能。具体而言,与空白溶剂相比,SZ@SEP-1/2 的平均解吸率提高了 37.3%,热负荷降低了 48.6%。此外,SZ@SEP-1/2 在 20 个循环中表现出卓越的稳定性,这表明它有潜力成为二氧化碳捕集的节能催化剂。
{"title":"One-step synthesis of SO42−/ZrO2‑SEP solid-acid catalyst for energy-efficient CO2 capture","authors":"Minhua Li, Saeed Askari, Yingjie Niu, Ting Li, Ali Zavabeti, Masood S. Alivand, Kathryn A. Mumford, Chao’en Li, Rui Zhang","doi":"10.1016/j.seppur.2024.130577","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130577","url":null,"abstract":"The application of solid-acid catalysts in the regeneration process of CO<sub>2</sub>-rich amine solutions is currently considered as a promising method for reducing the relative heat duty of CO<sub>2</sub> capture processes. In this study, sepiolite (SEP) was selected as a cost-efficient catalyst carrier to support the solid superacid SO<sub>4</sub><sup>2-</sup>/ZrO<sub>2</sub> (SZ) for preparing a series of composite SO<sub>4</sub><sup>2−</sup>/ZrO<sub>2</sub>‑SEP (SZ@SEP) catalysts with different SZ/SEP ratios. The physical–chemical properties of the prepared catalysts were carefully studied using various characterization techniques. The catalytic CO<sub>2</sub> desorption performance was tested in the conventional 5 M MEA solution at 88 °C. The amount of desorbed CO<sub>2</sub>, desorption rate and relative heat duty were accurately measured for each catalyst and a potential catalytic reaction mechanism was proposed. The results indicated that all catalysts significantly enhanced CO<sub>2</sub> desorption performance. Specifically, <span><span>SZ@SEP-1/2 achieved a 37.3</span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> % increase in average desorption rate and a 48.6 % decrease in heat duty compared to the blank solvent. Furthermore, SZ@SEP-1/2 demonstrated excellent stability over 20 cycles, suggesting its potential as an energy-efficient catalyst for CO<sub>2</sub> capture.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"17 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CO2 desorption is a critical process for chemical absorption carbon capture approach, and the reaction kinetics is an important basis for the design and scale-up of desorption process. Here, kinetic modeling of CO2 desorption in primary/secondary and tertiary amines was developed for N-(2-aminoethyl) ethanolamine (AEEA) and N,N-diethylethanolamine (DEEA), which are typical primary/secondary and tertiary amines, respectively. With the assumption that the protonated amine and carbamate or bicarbonate have the same concentration at the same moment, the desorption kinetic modeling of the two types of amines can be expressed by a pseudo-second-order equation. Quantitative speciation of the components in the absorbent was performed by 1H and 13C NMR spectra, which supported the model assumptions. Furthermore, quantum chemical calculation was conducted to reveal the reaction mechanism during CO2 desorption. Model reliability was verified by N-methyl diethanolamine (MDEA) desorption data. The Arrhenius kinetic equations for the desorption of AEEA and DEEA were determined, and the activation energies were 43.08 and 49.21 kJ/mol, respectively. The validated kinetic model of CO2 desorption is promising to provide fundamental parameters for the design and optimization of regeneration units for CO2 capture.
{"title":"Reaction kinetic modeling of carbon dioxide desorption in aqueous amine solutions","authors":"Rui-Qi Jia, Shuang Liang, Zhi-Yuan Xue, Guang-Wen Chu, Liang-Liang Zhang, Jian-Feng Chen","doi":"10.1016/j.seppur.2024.130578","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130578","url":null,"abstract":"CO<sub>2</sub> desorption is a critical process for chemical absorption carbon capture approach, and the reaction kinetics is an important basis for the design and scale-up of desorption process. Here, kinetic modeling of CO<sub>2</sub> desorption in primary/secondary and tertiary amines was developed for N-(2-aminoethyl) ethanolamine (AEEA) and N,N-diethylethanolamine (DEEA), which are typical primary/secondary and tertiary amines, respectively. With the assumption that the protonated amine and carbamate or bicarbonate have the same concentration at the same moment, the desorption kinetic modeling of the two types of amines can be expressed by a pseudo-second-order equation. Quantitative speciation of the components in the absorbent was performed by <sup>1</sup>H and <sup>13</sup>C NMR spectra, which supported the model assumptions. Furthermore, quantum chemical calculation was conducted to reveal the reaction mechanism during CO<sub>2</sub> desorption. Model reliability was verified by N-methyl diethanolamine (MDEA) desorption data. The Arrhenius kinetic equations for the desorption of AEEA and DEEA were determined, and the activation energies were 43.08 and 49.21 kJ/mol, respectively. The validated kinetic model of CO<sub>2</sub> desorption is promising to provide fundamental parameters for the design and optimization of regeneration units for CO<sub>2</sub> capture.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"23 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, through a facile one-step hydrothermal reaction, MoO42- intercalated NiFe-LDH is obtained, from which a series of multi-metal sulfides of MSx-T (M = Ni, Fe, and Mo, and T refers to sulfuration temperature) are fabricated by sulfuration at different temperature. The NiFeMoS materials present super-fluffy structure with micron spheres assembled by ultrathin nanosheets, resulting in excellent adsorption performance toward silver ions. The optimized NiFeMoS-500 exhibits a maximum Ag(I) capture of 308 mg·g−1 profiting from the hard and soft acid and base (HSAB) affinity and oxidation–reduction (REDOX) reaction. The 10 ppm of Ag+ can be reduced to 0.016 ppm (16 ppb) within 10 min, giving a ∼ 100 % removal. For trace Ag+ (∼1 ppm) with a high Cu:Ag ratio of 1000:1, a large separation factor SFAg/Cu (=KdAg/KdCu) of 1.80 × 104 is achieved, and for a more dilute solution of Ag+ (∼0.5 ppm) with Cu:Ag ratio of 40:1, a much larger SFAg/Cu of 1.07 × 105 is gained. The S2- in MSx as a soft Lewis base induces the capture of Ag+ as a soft Lewis acid, and the Mo4+ and S2- of MoS2 work as reducing agents to reduce Ag+ ions to Ag0 crystals with morphology of cypress leaves in nanoscale. The Mo4+ can be oxidized to MoO42- which further binds with Ag+ forming Ag2MoO4, thus increasing the silver capture. This work provides inspiration to tailor effective adsorbents for trapping Ag+ from wastewater or extracting noble metals from silver-bearing copper ores leachates.
{"title":"Polymetallic sulfide MSx (M = Ni, Fe, and Mo) microspheres for highly selective extraction of Ag+ over Cu2+ and reduction of Ag+ ions to Ag0 metals","authors":"Senkai Han, Huiqin Yao, Hui Wang, Zitong Wang, Siao Li, Yanwei Sun, Mengwei Yuan, Shulan Ma","doi":"10.1016/j.seppur.2024.130568","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130568","url":null,"abstract":"In this work, through a facile one-step hydrothermal reaction, MoO<sub>4</sub><sup>2-</sup> intercalated NiFe-LDH is obtained, from which a series of multi-metal sulfides of MS<sub>x</sub>-<em>T</em> (M = Ni, Fe, and Mo, and <em>T</em> refers to sulfuration temperature) are fabricated by sulfuration at different temperature. The NiFeMoS materials present super-fluffy structure with micron spheres assembled by ultrathin nanosheets, resulting in excellent adsorption performance toward silver ions. The optimized NiFeMoS-<em>500</em> exhibits a maximum Ag(I) capture of 308 mg·g<sup>−1</sup> profiting from the hard and soft acid and base (HSAB) affinity and oxidation–reduction (REDOX) reaction. The 10 ppm of Ag<sup>+</sup> can be reduced to 0.016 ppm (16 ppb) within 10 min, giving a ∼ 100 % removal. For trace Ag<sup>+</sup> (∼1 ppm) with a high Cu:Ag ratio of 1000:1, a large separation factor SF<sub>Ag/Cu</sub> (=<em>K</em><sub>d</sub><sup>Ag</sup>/<em>K</em><sub>d</sub><sup>Cu</sup>) of 1.80 × 10<sup>4</sup> is achieved, and for a more dilute solution of Ag<sup>+</sup> (∼0.5 ppm) with Cu:Ag ratio of 40:1, a much larger SF<sub>Ag/Cu</sub> of 1.07 × 10<sup>5</sup> is gained. The S<sup>2-</sup> in MS<sub>x</sub> as a soft Lewis base induces the capture of Ag<sup>+</sup> as a soft Lewis acid, and the Mo<sup>4+</sup> and S<sup>2-</sup> of MoS<sub>2</sub> work as reducing agents to reduce Ag<sup>+</sup> ions to Ag<sup>0</sup> crystals with morphology of cypress leaves in nanoscale. The Mo<sup>4+</sup> can be oxidized to MoO<sub>4</sub><sup>2-</sup> which further binds with Ag<sup>+</sup> forming Ag<sub>2</sub>MoO<sub>4</sub>, thus increasing the silver capture. This work provides inspiration to tailor effective adsorbents for trapping Ag<sup>+</sup> from wastewater or extracting noble metals from silver-bearing copper ores leachates.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"8 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.seppur.2024.130563
Guoke Zhao, Jie Sun, Ying Wan, Guoyuan Pan, Yang Zhang, Yiqun Liu
Researchers have developed pH-stable nanofiltration membranes with polyamine or polyurea selective layers to meet the challenges posed by extreme pH conditions. However, their limited overall separation capacity constrains their effectiveness in alkali resource recovery. In the present study, we report the fabrication of an innovative pH stable nanofiltration membrane via interfacial polymerization between isocyanates and amines. The strategic modulation of isocyanates, varying in molecular structure and reactivity, enabled fine-tuning of the resultant poly(urea-thiourea) selective layer’s molecular architecture. 1.8″ × 12″ sized spiral wound membrane elements were fabricated and their potential for recovering alkali resources from mercerizing wastewater was evaluated. The membrane elements achieved a COD rejection of 80 %, an OH− permeability of 92 %, with a water flux of 6.5 L/h under 1 MPa. The results underscore their superior comprehensive separation capabilities. These innovative membranes may facilitate impactful pollution mitigation and carbon footprint reduction in the textile industry, by promoting efficient resource recovery and reuse of treated water, thereby promising significant economic and environmental benefits.
{"title":"Scalable fabrication of poly(urea-thiourea) nanofiltration membrane elements for extreme pH conditions and efficient alkali recovery","authors":"Guoke Zhao, Jie Sun, Ying Wan, Guoyuan Pan, Yang Zhang, Yiqun Liu","doi":"10.1016/j.seppur.2024.130563","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130563","url":null,"abstract":"Researchers have developed pH-stable nanofiltration membranes with polyamine or polyurea selective layers to meet the challenges posed by extreme pH conditions. However, their limited overall separation capacity constrains their effectiveness in alkali resource recovery. In the present study, we report the fabrication of an innovative pH stable nanofiltration membrane via interfacial polymerization between isocyanates and amines. The strategic modulation of isocyanates, varying in molecular structure and reactivity, enabled fine-tuning of the resultant poly(urea-thiourea) selective layer’s molecular architecture. 1.8″ × 12″ sized spiral wound membrane elements were fabricated and their potential for recovering alkali resources from mercerizing wastewater was evaluated. The membrane elements achieved a COD rejection of 80 %, an OH<sup>−</sup> permeability of 92 %, with a water flux of 6.5 L/h under 1 MPa. The results underscore their superior comprehensive separation capabilities. These innovative membranes may facilitate impactful pollution mitigation and carbon footprint reduction in the textile industry, by promoting efficient resource recovery and reuse of treated water, thereby promising significant economic and environmental benefits.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"75 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.seppur.2024.130572
Yinglin Mai, Kunchi Xie, Shuyin Liang, Guanwei Li, Jiuhang Song, Chenxi Shi, Zhen Song, Xiaoqing Lin
This study investigates the extraction of 5-hydroxymethylfurfural (5-HMF) from multicomponent aqueous solutions using hydrophobic deep eutectic solvents (DESs) based on terpenoids. The optimized octanoic acid-thymol (1:1) DES achieved an extraction efficiency of 69.92 % with selectivity coefficients of α5-HMF/LA = 9.05 and α5-HMF/FA = 232.39. Moreover, after four stages of extraction, the efficiency of 5-HMF extraction reached 98.54 %, with α5-HMF/LA and α5-HMF/FA values of 28.51and 1698.13, respectively, demonstrating superior separation of 5-HMF from levulinic acid (LA) and formic acid (FA). Compared to existing technologies, this method offers higher extraction efficiency and selectivity with lower toxicity and operational costs. Theoretical calculations confirmed the role of thymol as both a hydrogen bond donor and acceptor, enhancing non-covalent interactions with 5-HMF. Kinetic studies revealed that lower temperatures favor DES extraction performance, offering new insights into the industrial application of hydrophobic DESs for bio-based chemical separations.
本研究探讨了使用基于萜类化合物的疏水性深共晶溶剂(DES)从多组分水溶液中萃取5-羟甲基糠醛(5-HMF)的方法。优化的辛酸-胸腺酚(1:1)DES 的萃取效率为 69.92%,选择性系数为 α5-HMF/LA = 9.05 和 α5-HMF/FA = 232.39。此外,经过四级萃取后,5-HMF的萃取效率达到98.54%,α5-HMF/LA和α5-HMF/FA值分别为28.51和1698.13,显示了5-HMF从左旋乙酸(LA)和甲酸(FA)中分离的优越性。与现有技术相比,该方法具有更高的萃取效率和选择性,毒性和操作成本更低。理论计算证实,百里酚既是氢键供体,又是氢键受体,能增强与 5-HMF 的非共价相互作用。动力学研究表明,较低的温度有利于 DES 的萃取性能,这为疏水性 DES 在生物基化学分离中的工业应用提供了新的见解。
{"title":"Efficient extraction of 5-hydroxymethylfurfural from multi-components aqueous solution by hydrophobic deep eutectic solvents","authors":"Yinglin Mai, Kunchi Xie, Shuyin Liang, Guanwei Li, Jiuhang Song, Chenxi Shi, Zhen Song, Xiaoqing Lin","doi":"10.1016/j.seppur.2024.130572","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130572","url":null,"abstract":"This study investigates the extraction of 5-hydroxymethylfurfural (5-HMF) from multicomponent aqueous solutions using hydrophobic deep eutectic solvents (DESs) based on terpenoids. The optimized octanoic acid-thymol (1:1) DES achieved an extraction efficiency of 69.92 % with selectivity coefficients of α<sub>5-HMF/LA</sub> = 9.05 and α<sub>5-HMF/FA</sub> = 232.39. Moreover, after four stages of extraction, the efficiency of 5-HMF extraction reached 98.54 %, with α<sub>5-HMF/LA</sub> and α<sub>5-HMF/FA</sub> values of 28.51and 1698.13, respectively, demonstrating superior separation of 5-HMF from levulinic acid (LA) and formic acid (FA). Compared to existing technologies, this method offers higher extraction efficiency and selectivity with lower toxicity and operational costs. Theoretical calculations confirmed the role of thymol as both a hydrogen bond donor and acceptor, enhancing non-covalent interactions with 5-HMF. Kinetic studies revealed that lower temperatures favor DES extraction performance, offering new insights into the industrial application of hydrophobic DESs for bio-based chemical separations.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"80 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.seppur.2024.130569
Jian Yu, Jianfei Xiao, Yuan Wang, Tian C. Zhang, Ji Li, Ge He, Shaojun Yuan
Biomass-derived carbon aerogels have attracted considerable attention for applications in CO2 capture and supercapacitors (SCs). However, these carbon aerogel materials often suffer from an insufficient number of active sites. In this study, a novel N, P co-doped porous carbon aerogel with a hierarchical structure was synthesized using cellulose biomass as the raw material, a NaOH/urea system as the solvent and activator, and urea and urea phosphate as heteroatom dopants. Owing to the synergistic effects of heteroatom co-doping and the hierarchical pore structure, the optimal sample, NPCA-600–0.5, exhibited a large specific surface area of 582.9 m2/g and a high pore volume of 0.187 cm3/g. It demonstrated a CO2 adsorption capacity of 2.89 mmol/g (25 ℃, 1 bar), along with high CO2/N2 selectivity and excellent recyclability, retaining 91 % efficiency after 10 cycles. As a SC electrode, NPCA-600–0.5 achieved a high specific capacitance of 238 F/g at 1 A/g, maintaining 80 % of its initial capacitance after 5000 cycles at 10 A/g. This work not only provides a promising adsorbent and electrode material for CO2 capture and supercapacitors, but also offers valuable insights for the design of advanced carbon-based materials.
{"title":"N, P co-doped cellulose-based carbon aerogel: A dual-functional porous material for CO2 capture and supercapacitor","authors":"Jian Yu, Jianfei Xiao, Yuan Wang, Tian C. Zhang, Ji Li, Ge He, Shaojun Yuan","doi":"10.1016/j.seppur.2024.130569","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130569","url":null,"abstract":"Biomass-derived carbon aerogels have attracted considerable attention for applications in CO<sub>2</sub> capture and supercapacitors (SCs). However, these carbon aerogel materials often suffer from an insufficient number of active sites. In this study, a novel N, P co-doped porous carbon aerogel with a hierarchical structure was synthesized using cellulose biomass as the raw material, a NaOH/urea system as the solvent and activator, and urea and urea phosphate as heteroatom dopants. Owing to the synergistic effects of heteroatom co-doping and the hierarchical pore structure, the optimal sample, NPCA-600–0.5, exhibited a large specific surface area of 582.9 m<sup>2</sup>/g and a high pore volume of 0.187 cm<sup>3</sup>/g. It demonstrated a CO<sub>2</sub> adsorption capacity of 2.89 mmol/g (25 ℃, 1 bar), along with high CO<sub>2</sub>/N<sub>2</sub> selectivity and excellent recyclability, retaining 91 % efficiency after 10 cycles. As a SC electrode, NPCA-600–0.5 achieved a high specific capacitance of 238 F/g at 1 A/g, maintaining 80 % of its initial capacitance after 5000 cycles at 10 A/g. This work not only provides a promising adsorbent and electrode material for CO<sub>2</sub> capture and supercapacitors, but also offers valuable insights for the design of advanced carbon-based materials.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"17 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.seppur.2024.130509
Xin Zhang, Zhen Liu, Man Li, Ruidian Su, Xing Xu, Baoyu Gao, Qian Li
In this work, Fe-loaded MnO2 (Fe@MnO2) nanomaterials were co-pressed with gallic acid (GA) and sodium percarbonate (SPC) to form a composite effervescent tablet (G-S-MOFO-ET) for the efficient degradation of antibiotics. The modulation of GA accelerated the Fe/Mn cycling on the catalyst surface while making the effervescent tablet system excellent in degradation, cyclic stability and resistance to environmental interference. About 95 % amoxicillin (AMX) could be degraded within 3 min (kobs = 0.0157 min−1). Density functional theory (DFT) calculations indicated that the introduction of Fe sites realized the transfer of the catalyst active sites from Mn to Fe, resulting in the formation of a degradation system dominated by ·O2•− and assisted by HO• and 1O2. In addition, the micron bubbles generated by the self-aeration of the effervescent tablet significantly enhanced the mass transfer efficiency of the system, which is equivalent to magnetic stirring at 50 r/min and has a promising future in engineering applications.
{"title":"Novel sodium percarbonate/gallic acid/Fe doped MnO2 catalyst effervescent tablets for efficient degradation of amoxicillin","authors":"Xin Zhang, Zhen Liu, Man Li, Ruidian Su, Xing Xu, Baoyu Gao, Qian Li","doi":"10.1016/j.seppur.2024.130509","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130509","url":null,"abstract":"In this work, Fe-loaded MnO<sub>2</sub> (Fe@MnO<sub>2</sub>) nanomaterials were co-pressed with gallic acid (GA) and sodium percarbonate (SPC) to form a composite effervescent tablet (G-S-MOFO-ET) for the efficient degradation of antibiotics. The modulation of GA accelerated the Fe/Mn cycling on the catalyst surface while making the effervescent tablet system excellent in degradation, cyclic stability and resistance to environmental interference. About 95 % amoxicillin (AMX) could be degraded within 3 min (k<sub>obs</sub> = 0.0157 min<sup>−1</sup>). Density functional theory (DFT) calculations indicated that the introduction of Fe sites realized the transfer of the catalyst active sites from Mn to Fe, resulting in the formation of a degradation system dominated by ·O<sub>2</sub><sup>•−</sup> and assisted by HO<sup>•</sup> and <sup>1</sup>O<sub>2</sub>. In addition, the micron bubbles generated by the self-aeration of the effervescent tablet significantly enhanced the mass transfer efficiency of the system, which is equivalent to magnetic stirring at 50 r/min and has a promising future in engineering applications.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"43 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iron and nitrogen co-doped biochar membrane (Fe/N/BC membrane) was fabricated. Epoxy resin was used as a binder, 4,4́-diaminodiphenylmethane as curing agent, and polyethylpyrrolidone as pore-making agent, respectively. The Fe/N/BC membrane showed excellent performance of filtration and catalytic oxidative removal of sulfamethoxazole (SMX) in water and its water flux was 127 L·m−2·h−1·bar−1. The Fe/N/BC membrane had a good application prospect in a wide pH range (both acidic and neutral conditions). The contribution of Fe doping was higher than that of N doping in the SO4• − and ·OH radicals generation pathways but the contribution of N doping is higher than that of Fe doping for the 1O2 non-radical generation pathway. Finally, the membrane facilitates the recovery of catalytic materials and solves the problem of secondary pollution to the environment. This study provides an important practical prospect for efficient and rapid removal of SMX in water.
{"title":"Iron and nitrogen co-doped biochar membrane for SMX removal in water by filtration and catalytic oxidation","authors":"Hongyu Liu, Fengqing Xin, Xin Wen, Huan Zhang, Huicai Wang, Junfu Wei","doi":"10.1016/j.seppur.2024.130562","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130562","url":null,"abstract":"Iron and nitrogen co-doped biochar membrane (Fe/N/BC membrane) was fabricated. Epoxy resin was used as a binder, 4,4́-diaminodiphenylmethane as curing agent, and polyethylpyrrolidone as pore-making agent, respectively. The Fe/N/BC membrane showed excellent performance of filtration and catalytic oxidative removal of sulfamethoxazole (SMX) in water and its water flux was 127 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup>. The Fe/N/BC membrane had a good application prospect in a wide pH range (both acidic and neutral conditions). The contribution of Fe doping was higher than that of N doping in the SO<sub>4</sub><strong><sup>• −</sup></strong> and <strong>·</strong>OH radicals generation pathways but the contribution of N doping is higher than that of Fe doping for the<!-- --> <sup>1</sup>O<sub>2</sub> non-radical generation pathway. Finally, the membrane facilitates the recovery of catalytic materials and solves the problem of secondary pollution to the<!-- --> <!-- -->environment. This study provides an important practical prospect for efficient and rapid removal of SMX in water.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"27 22 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.seppur.2024.130570
Zhichun Shi, Haoyuan Tang, Liqiu Sun, Jianjun Wang, Jun Li, Dan Wang, Liying Qi, Liyan Wang, Guohua Dong, Ming Zhao
Designing and preparing of materials for high highly efficiency and reversible iodine adsorption remains a challenging task. In this study, a series of benzonquanmine-based hypercrosslinked polymers (BHCPs) with nitrogen-rich were designed and synthesized via Friedel-Crafts reaction. The obtained BHCPs showed the high specific surface and high thermal stability. Moreover, the BHCP-3 of BHCPs exhibits excellent iodine capture performance, including ultrahigh iodine vapor adsorption capacity of 619 wt%, the breakthrough iodine experiment of the adsorption capacity reached 2.29 g/g, which is the highest published capacity of HCP adsorbent. And the removal rate of iodine in aqueous solution also reached 92.5 %, and reached 87.4 % the first 10 min, demonstrating rapid adsorption effects. Additionally, the iodine adsorption process of BHCPs conformed to the pseudo-second-order kinetic models, and which were a multi-layer adsorption on non-homogeneous surfaces. Furthermore, the three adsorbents maintained more than 85 % of their iodine capture capacity after five cycles, demonstrating their good recyclability and potential for practical applications.
{"title":"Benzonquanmine-based hypercrosslinked polymers for high-efficiency and reversible iodine capture","authors":"Zhichun Shi, Haoyuan Tang, Liqiu Sun, Jianjun Wang, Jun Li, Dan Wang, Liying Qi, Liyan Wang, Guohua Dong, Ming Zhao","doi":"10.1016/j.seppur.2024.130570","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130570","url":null,"abstract":"Designing and preparing of materials for high highly efficiency and reversible iodine adsorption remains a challenging task. In this study, a series of benzonquanmine-based hypercrosslinked polymers (BHCPs) with nitrogen-rich were designed and synthesized via Friedel-Crafts reaction. The obtained BHCPs showed the high specific surface and high thermal stability. Moreover, the BHCP-3 of BHCPs exhibits excellent iodine capture performance, including ultrahigh iodine vapor adsorption capacity of 619 wt%, the breakthrough iodine experiment of the adsorption capacity reached 2.29 g/g, which is the highest published capacity of HCP adsorbent. And the removal rate of iodine in aqueous solution also reached 92.5 %, and reached 87.4 % the first 10 min, demonstrating rapid adsorption effects. Additionally, the iodine adsorption process of BHCPs conformed to the pseudo-second-order kinetic models, and which were a multi-layer adsorption on non-homogeneous surfaces. Furthermore, the three adsorbents maintained more than 85 % of their iodine capture capacity after five cycles, demonstrating their good recyclability and potential for practical applications.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"32 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Membrane technologies are extensively employed for the separation of surfactant-stabilized oil/water emulsions due to their high efficiency and selectivity. Either membrane filtration or demulsification experiences performance reduction due to the monotonous increase or decrease in emulsion concentration over time. In this study, we have developed a dual-membrane module that integrates a hydrophilic hollow fiber membrane module with a Janus hollow fiber membrane module. This synergistic approach effectively overcomes the limitations of individual filtration and demulsification processes by dynamically adjusting emulsion concentration within the system. Compared to single-membrane modules, the recoveries of both water and oil increased by 27 % and 280 %, respectively. Additionally, the water content in the permeate oil is less than 0.03 %, and the total organic carbon in the permeate water is less than 12 ppm. Furthermore, this design allows for the concurrent recovery of oil and water from emulsions, offering a promising approach to achieving zero liquid discharge.
{"title":"Sequential separation of oil-in-water emulsions using integrated hydrophilic and Janus membrane modules","authors":"Rui Zhu, Hao-Nan Li, Xu-Yu Xia, Xin-Yu Guo, Xiao-Jun Huang, Chao Zhang, Hong-Qing Liang, Hao-Cheng Yang, Zhi-Kang Xu","doi":"10.1016/j.seppur.2024.130552","DOIUrl":"https://doi.org/10.1016/j.seppur.2024.130552","url":null,"abstract":"Membrane technologies are extensively employed for the separation of surfactant-stabilized oil/water emulsions due to their high efficiency and selectivity. Either membrane filtration or demulsification experiences performance reduction due to the monotonous increase or decrease in emulsion concentration over time. In this study, we have developed a dual-membrane module that integrates a hydrophilic hollow fiber membrane module with a Janus hollow fiber membrane module. This synergistic approach effectively overcomes the limitations of individual filtration and demulsification processes by dynamically adjusting emulsion concentration within the system. Compared to single-membrane modules, the recoveries of both water and oil increased by 27 % and 280 %, respectively. Additionally, the water content in the permeate oil is less than 0.03 %, and the total organic carbon in the permeate water is less than 12 ppm. Furthermore, this design allows for the concurrent recovery of oil and water from emulsions, offering a promising approach to achieving zero liquid discharge.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"112 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}