首页 > 最新文献

2012 IEEE Silicon Nanoelectronics Workshop (SNW)最新文献

英文 中文
Innovative thermal energy harvesting for zero power electronics 创新的零功率电子热能收集
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243313
S. Monfray, O. Puscasu, G. Savelli, U. Soupremanien, E. Ollier, C. Guérin, L. Fréchette, É. Léveillé, G. Mirshekari, C. Maitre, P. Coronel, K. Domanski, P. Grabiec, P. Ancey, D. Guyomar, V. Bottarel, G. Ricotti, F. Boeuf, F. Gaillard, T. Skotnicki
Thermal gradients, commonly present in our environment (fluid lines, warm fronts, electronics) are sources of energy rarely used today. This paper aims to present innovative approaches of thin and/or flexible thermal energy harvesters for smart and autonomous sensor network applications. The harvester system will be based on the collaborative work of interrelated energy nodes/units, which will be either piezo-thermofluidic converters (use of rapid thermal cycles of a working fluid) or piezo-thermomechanic converters (use of the mechanical energy developed by rapid snapping of micro-switches). The two kinds of energy nodes convert a heat flux into storable electrical energy through a piezoelectric transducer. Miniaturization of the energy nodes will lead to increased thermal transfer rates and consequently increased harvested power. To effectively use thermal energy sources in varying environments, the nodes will be adaptive versus different thermal gradients (in a predefined temperature range) and will possibly influence each other. The concept is unique in the sense that it is based on a matrix structure of micro or mini energy nodes which will work together in a collective approach to optimize the harvested energy, and which do not require the use of radiators as classical Seebeck approach, thanks to the controlled thermal resistance. This opens the door to new properties and features of the object, with better performances. It could therefore be declined on flexible substrates, allowing conformability around the sources of potential heat for low power applications.
热梯度,通常存在于我们的环境中(流体线,暖锋,电子),是今天很少使用的能源来源。本文旨在介绍用于智能和自主传感器网络应用的薄型和/或柔性热能采集器的创新方法。收割机系统将基于相互关联的能量节点/单元的协同工作,这些能量节点/单元将是压电-热流体转换器(利用工作流体的快速热循环)或压电-热机械转换器(利用通过快速敲击微开关产生的机械能)。这两种能量节点通过压电换能器将热流转化为可存储的电能。能量节点的小型化将导致热传递率的增加,从而增加收获的功率。为了在不同的环境中有效地利用热能,节点将对不同的热梯度(在预定义的温度范围内)进行自适应,并可能相互影响。这个概念的独特之处在于,它基于微型或迷你能量节点的矩阵结构,这些节点将以集体的方式协同工作,以优化所收集的能量,并且由于热阻可控,不需要像传统的塞贝克方法那样使用散热器。这为对象的新属性和特征打开了大门,具有更好的性能。因此,它可以在柔性基板上下降,允许低功耗应用的潜在热源周围的一致性。
{"title":"Innovative thermal energy harvesting for zero power electronics","authors":"S. Monfray, O. Puscasu, G. Savelli, U. Soupremanien, E. Ollier, C. Guérin, L. Fréchette, É. Léveillé, G. Mirshekari, C. Maitre, P. Coronel, K. Domanski, P. Grabiec, P. Ancey, D. Guyomar, V. Bottarel, G. Ricotti, F. Boeuf, F. Gaillard, T. Skotnicki","doi":"10.1109/SNW.2012.6243313","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243313","url":null,"abstract":"Thermal gradients, commonly present in our environment (fluid lines, warm fronts, electronics) are sources of energy rarely used today. This paper aims to present innovative approaches of thin and/or flexible thermal energy harvesters for smart and autonomous sensor network applications. The harvester system will be based on the collaborative work of interrelated energy nodes/units, which will be either piezo-thermofluidic converters (use of rapid thermal cycles of a working fluid) or piezo-thermomechanic converters (use of the mechanical energy developed by rapid snapping of micro-switches). The two kinds of energy nodes convert a heat flux into storable electrical energy through a piezoelectric transducer. Miniaturization of the energy nodes will lead to increased thermal transfer rates and consequently increased harvested power. To effectively use thermal energy sources in varying environments, the nodes will be adaptive versus different thermal gradients (in a predefined temperature range) and will possibly influence each other. The concept is unique in the sense that it is based on a matrix structure of micro or mini energy nodes which will work together in a collective approach to optimize the harvested energy, and which do not require the use of radiators as classical Seebeck approach, thanks to the controlled thermal resistance. This opens the door to new properties and features of the object, with better performances. It could therefore be declined on flexible substrates, allowing conformability around the sources of potential heat for low power applications.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"31 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89908324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Mechanisms of ambient dependent mobility degradation in the graphene MOSFETs on SiO2 substrate 二氧化硅衬底上石墨烯mosfet中随环境变化的迁移率退化机制
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243362
Y. G. Lee, C. Kang, C. Cho, Y. H. Kim, H. Hwang, J. J. Kim, U. Jung, E. Park, M. W. Kim, B. H. Lee
Two different mechanisms affecting the device instability and mobility degradation at graphene MOSFET on SiO2 substrate and their time constant, 40μsec and ~ 370μsec, have been identified. Oxygen/H2O reaction at the surface of graphene was identified as a major source of device hysteresis causing mobility degradation and device instability.
确定了影响SiO2衬底上石墨烯MOSFET器件不稳定性和迁移率退化的两种不同机制及其时间常数(40μsec和~ 370μsec)。石墨烯表面的氧/水反应被认为是导致器件迁移率下降和器件不稳定的器件滞后的主要来源。
{"title":"Mechanisms of ambient dependent mobility degradation in the graphene MOSFETs on SiO2 substrate","authors":"Y. G. Lee, C. Kang, C. Cho, Y. H. Kim, H. Hwang, J. J. Kim, U. Jung, E. Park, M. W. Kim, B. H. Lee","doi":"10.1109/SNW.2012.6243362","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243362","url":null,"abstract":"Two different mechanisms affecting the device instability and mobility degradation at graphene MOSFET on SiO2 substrate and their time constant, 40μsec and ~ 370μsec, have been identified. Oxygen/H2O reaction at the surface of graphene was identified as a major source of device hysteresis causing mobility degradation and device instability.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"24 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86859310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay of self-heating effects and static RTF in nanowire transistors 纳米线晶体管中自热效应与静态RTF的相互作用
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243294
D. Vasileska, A. Hossain, S. Goodnick
The purpose of this work is to present the results of our current investigations of the influence of the negatively charged trap on the magnitude of the on-current for the case when in addition to the short-range Coulomb interactions, self-heating effects are incorporated in the theoretical model. The nanowire FET being simulated in this work has gate oxide 0.8 nm thick and the BOX is 10 nm thick. The dimensions of the silicon nanowire are: 10 nm channel length, 7 nm channel thickness and 10 nm channel width. For the thermal conductivity, that appears in the acoustic phonons energy balance solvers, we have taken the value from Li Shi measurements that correspond to wire with cross-section of 7x10 nm.
这项工作的目的是展示我们目前对除短程库仑相互作用外,在理论模型中纳入自热效应的情况下,负电荷阱对导通电流大小的影响的研究结果。本文模拟的纳米线场效应管栅极氧化物厚度为0.8 nm, BOX厚度为10 nm。硅纳米线的尺寸为:通道长度为10 nm,通道厚度为7 nm,通道宽度为10 nm。对于出现在声子能量平衡解算器中的热导率,我们采用了李石测量的值,该值对应于横截面为7x10nm的导线。
{"title":"The interplay of self-heating effects and static RTF in nanowire transistors","authors":"D. Vasileska, A. Hossain, S. Goodnick","doi":"10.1109/SNW.2012.6243294","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243294","url":null,"abstract":"The purpose of this work is to present the results of our current investigations of the influence of the negatively charged trap on the magnitude of the on-current for the case when in addition to the short-range Coulomb interactions, self-heating effects are incorporated in the theoretical model. The nanowire FET being simulated in this work has gate oxide 0.8 nm thick and the BOX is 10 nm thick. The dimensions of the silicon nanowire are: 10 nm channel length, 7 nm channel thickness and 10 nm channel width. For the thermal conductivity, that appears in the acoustic phonons energy balance solvers, we have taken the value from Li Shi measurements that correspond to wire with cross-section of 7x10 nm.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"61 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84805656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Silicon single-electron transfer devices: Ultimate control of electric charge 硅单电子转移装置:电荷的终极控制
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243336
A. Fujiwara, G. Yamahata, K. Nishiguchi, G. Lansbergen, Y. Ono
In this paper we describe our recent efforts to develop SE transfer devices based on Si nanotechnology.
在本文中,我们描述了我们最近的努力开发基于硅纳米技术的SE转移器件。
{"title":"Silicon single-electron transfer devices: Ultimate control of electric charge","authors":"A. Fujiwara, G. Yamahata, K. Nishiguchi, G. Lansbergen, Y. Ono","doi":"10.1109/SNW.2012.6243336","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243336","url":null,"abstract":"In this paper we describe our recent efforts to develop SE transfer devices based on Si nanotechnology.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"1 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90185285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Band structure and electron transport in multi-junction graphene nanoribbons 多结石墨烯纳米带的能带结构和电子输运
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243281
N. Hasegawa, R. Sako, H. Tsuchiya, M. Ogawa
In this study, an electrical heterojunction consisting of multi-connected semiconducting and metallic graphene nanoribbons with armchair-edged configurations, is considered and discuss its basic properties by performing the electronic band structure calculations.
在本研究中,考虑了由多连接的半导体和金属石墨烯纳米带组成的具有扶手椅边缘结构的电异质结,并通过进行电子能带结构计算来讨论其基本性质。
{"title":"Band structure and electron transport in multi-junction graphene nanoribbons","authors":"N. Hasegawa, R. Sako, H. Tsuchiya, M. Ogawa","doi":"10.1109/SNW.2012.6243281","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243281","url":null,"abstract":"In this study, an electrical heterojunction consisting of multi-connected semiconducting and metallic graphene nanoribbons with armchair-edged configurations, is considered and discuss its basic properties by performing the electronic band structure calculations.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"40 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81873948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the statistical trap-response (STR) method for characterizing random trap occupancy and NBTI fluctuation 统计陷阱-响应(STR)方法表征随机陷阱占用率和NBTI波动
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243346
Jibin Zou, Changze Liu, Runsheng Wang, Xiaoqing Xu, Jinhua Liu, Hanming Wu, Yangyuan Wang, Ru Huang
In nanoscale devices with only a few oxide traps, characterization of trap response during NBTI stress is challenging due to the stochastic nature of trapping/detrapping behavior. This paper successfully extends the statistical trap-response (STR) method from DC to AC device operation, for getting a full understanding of the trap occupancy probability and the aging-induced dynamic variations under DC and AC NBTI. The AC trap response and the AC NBTI fluctuations are found largely deviating from the DC case, indicating different physical mechanisms.
在只有少量氧化物陷阱的纳米级器件中,由于陷阱/脱陷阱行为的随机性,表征NBTI应力下的陷阱响应是具有挑战性的。本文成功地将统计陷阱-响应(STR)方法从直流扩展到交流设备运行,以充分了解直流和交流NBTI下陷阱占用概率和老化引起的动态变化。发现交流阱响应和交流NBTI波动在很大程度上偏离直流情况,表明不同的物理机制。
{"title":"On the statistical trap-response (STR) method for characterizing random trap occupancy and NBTI fluctuation","authors":"Jibin Zou, Changze Liu, Runsheng Wang, Xiaoqing Xu, Jinhua Liu, Hanming Wu, Yangyuan Wang, Ru Huang","doi":"10.1109/SNW.2012.6243346","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243346","url":null,"abstract":"In nanoscale devices with only a few oxide traps, characterization of trap response during NBTI stress is challenging due to the stochastic nature of trapping/detrapping behavior. This paper successfully extends the statistical trap-response (STR) method from DC to AC device operation, for getting a full understanding of the trap occupancy probability and the aging-induced dynamic variations under DC and AC NBTI. The AC trap response and the AC NBTI fluctuations are found largely deviating from the DC case, indicating different physical mechanisms.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"3 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85754678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
New type steep-S device using the bipolar action 采用双极动作的新型陡s装置
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243314
D. Hisamoto, S. Saito, A. Shima, H. Yoshimoto, K. Torii
We have proposed an alternative approach for developing a steep subthreshold swing FET that is less than the theoretical diffusion-based limit of 60 mV/decade at room temperature. Instead of using a simple IGFET, we formed a complex device in a “single device” and worked it as a sub-circuit, which resulted in a steep subthreshold swing. We formed a tunnel junction in a drain diffusion layer of the MOSFET so that we could stuff a tunnel-injection bipolar, a resistor, and a MOSFET inside a single “scaled MOSFET”. We used device simulation to clarify the concept of “device complex”. Results showed a steep subthreshold swing even if the supply voltage was low (~0.2 V).
我们提出了一种开发陡峭亚阈值摆幅场效应管的替代方法,该方法在室温下小于60 mV/ 10年的理论扩散极限。我们没有使用简单的IGFET,而是在“单个器件”中形成了一个复杂的器件,并将其作为子电路工作,这导致了陡峭的亚阈值摆幅。我们在MOSFET的漏极扩散层中形成了一个隧道结,这样我们就可以在单个“缩放MOSFET”内填充一个隧道注入双极,一个电阻和一个MOSFET。我们用器件仿真来阐明“器件复合体”的概念。结果表明,即使电源电压较低(~0.2 V),其亚阈值摆幅也很陡。
{"title":"New type steep-S device using the bipolar action","authors":"D. Hisamoto, S. Saito, A. Shima, H. Yoshimoto, K. Torii","doi":"10.1109/SNW.2012.6243314","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243314","url":null,"abstract":"We have proposed an alternative approach for developing a steep subthreshold swing FET that is less than the theoretical diffusion-based limit of 60 mV/decade at room temperature. Instead of using a simple IGFET, we formed a complex device in a “single device” and worked it as a sub-circuit, which resulted in a steep subthreshold swing. We formed a tunnel junction in a drain diffusion layer of the MOSFET so that we could stuff a tunnel-injection bipolar, a resistor, and a MOSFET inside a single “scaled MOSFET”. We used device simulation to clarify the concept of “device complex”. Results showed a steep subthreshold swing even if the supply voltage was low (~0.2 V).","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"76 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74145321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-frequency properties of Si single-electron transistor 硅单电子晶体管的高频特性
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243339
H. Takenaka, M. Shinohara, T. Uchida, M. Arita, A. Fujiwara, Y. Ono, K. Nishiguchi, H. Inokawa, Y. Takahashi
High-frequency limit of Si single-electron transistor (SET) is investigated. Since the SETs inevitably have tunnel barriers, the operation speed is thought to be low. To measure the high frequency properties of SETs, we employed their special rectification characteristics, which occurred due to the asymmetry of Coulomb diamond when alternating current voltage was applied to the drain terminal. By the use of the effect, we evaluated the high-frequency properties of Si SETs.
研究了硅单电子晶体管(SET)的高频极限。由于set不可避免地存在隧道障碍,因此被认为运行速度较低。为了测量set的高频特性,我们利用了它们在漏极施加交流电压时由于库仑金刚石的不对称性而产生的特殊整流特性。利用该效应,我们评估了Si set的高频特性。
{"title":"High-frequency properties of Si single-electron transistor","authors":"H. Takenaka, M. Shinohara, T. Uchida, M. Arita, A. Fujiwara, Y. Ono, K. Nishiguchi, H. Inokawa, Y. Takahashi","doi":"10.1109/SNW.2012.6243339","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243339","url":null,"abstract":"High-frequency limit of Si single-electron transistor (SET) is investigated. Since the SETs inevitably have tunnel barriers, the operation speed is thought to be low. To measure the high frequency properties of SETs, we employed their special rectification characteristics, which occurred due to the asymmetry of Coulomb diamond when alternating current voltage was applied to the drain terminal. By the use of the effect, we evaluated the high-frequency properties of Si SETs.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"2001 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78553580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantum transport property in FETs with deterministically implanted single-arsenic ions using single-ion implantation 用单离子注入确定注入单砷离子的场效应管的量子输运性质
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243338
M. Hori, T. Shinada, F. Guagliardo, G. Ferrari, E. Prati
We fabricated silicon transistors containing two and six arsenic ions implanted in one dimensional array along the channel by single-ion implantation method. The quantum transport was measured through the D0 and D- states of the arsenic ions at low temperature. We observed two different quantum transport regimes from the individual donor regime to the intermediate doping regime in which Hubbard bands are formed in agreement with the theoretical models. These results indicate that our deterministic single-ion doping method is more effective and reliable for single-dopant transistor development and pave the way towards single atom electronics for extended CMOS applications [12].
采用单离子注入法制备了含2个和6个砷离子沿通道一维阵列注入的硅晶体管。在低温下,通过砷离子的D0态和D-态测量了量子输运。我们观察到两种不同的量子输运制度,从单个供体制度到中间掺杂制度,其中哈伯德带的形成与理论模型一致。这些结果表明,我们的确定性单离子掺杂方法对于单掺杂晶体管的开发更加有效和可靠,并为扩展CMOS应用的单原子电子学铺平了道路。
{"title":"Quantum transport property in FETs with deterministically implanted single-arsenic ions using single-ion implantation","authors":"M. Hori, T. Shinada, F. Guagliardo, G. Ferrari, E. Prati","doi":"10.1109/SNW.2012.6243338","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243338","url":null,"abstract":"We fabricated silicon transistors containing two and six arsenic ions implanted in one dimensional array along the channel by single-ion implantation method. The quantum transport was measured through the D0 and D- states of the arsenic ions at low temperature. We observed two different quantum transport regimes from the individual donor regime to the intermediate doping regime in which Hubbard bands are formed in agreement with the theoretical models. These results indicate that our deterministic single-ion doping method is more effective and reliable for single-dopant transistor development and pave the way towards single atom electronics for extended CMOS applications [12].","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"46 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72907700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
3-D stacked NAND flash memory having lateral bit-line layers and vertical gate 具有横向位线层和垂直栅极的3-D堆叠NAND闪存
Pub Date : 2012-06-10 DOI: 10.1109/SNW.2012.6243354
Ju-Wan Lee, M. Jeong, Byung-Gook Park, Hyungcheol Shin, Jang-Sik Lee
In this paper, we have studied a new 3-D stacked NAND flash memory structure and explained the fabrication sequence and key features of fabricated devices. Reasonable operation of the devices was shown in terms of ΔVth, retention and cycling characteristics. Moreover, the device characteristics were quite improved by removing the etch damage on the side surface (channel) of poly-Si BL layers when CDE process was adopted after etching the BL stack.
本文研究了一种新型的3-D堆叠NAND闪存结构,并阐述了该结构器件的制备顺序和关键特性。在ΔVth、保留和循环特性方面表明装置运行合理。此外,采用CDE工艺对多硅BL层进行刻蚀后,消除了其侧表面(通道)的刻蚀损伤,器件性能得到了很大的改善。
{"title":"3-D stacked NAND flash memory having lateral bit-line layers and vertical gate","authors":"Ju-Wan Lee, M. Jeong, Byung-Gook Park, Hyungcheol Shin, Jang-Sik Lee","doi":"10.1109/SNW.2012.6243354","DOIUrl":"https://doi.org/10.1109/SNW.2012.6243354","url":null,"abstract":"In this paper, we have studied a new 3-D stacked NAND flash memory structure and explained the fabrication sequence and key features of fabricated devices. Reasonable operation of the devices was shown in terms of ΔVth, retention and cycling characteristics. Moreover, the device characteristics were quite improved by removing the etch damage on the side surface (channel) of poly-Si BL layers when CDE process was adopted after etching the BL stack.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":"124 1","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77343856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2012 IEEE Silicon Nanoelectronics Workshop (SNW)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1