首页 > 最新文献

2021 IEEE International Interconnect Technology Conference (IITC)最新文献

英文 中文
Localization length of integrated multi-walled carbon nanotubes 集成多壁碳纳米管的定位长度
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831852
H. Fiedler, S. Hermann, M. Rennau, S. Schulz, T. Gessner
We prepared CNT based vias on wafer scale. Based on the electrical characterization we extracted the localization length of the CNTs. While for short CNTs the classical transport regime is valid, the Anderson localization regime applies for longer CNTs. Supplementary the characteristic length scales were estimated based on the structure of the CNTs being in good agreement with the parameters extracted from the electrical measurements.
我们在晶圆尺度上制备了基于碳纳米管的过孔。基于电特性,我们提取了CNTs的定位长度。对于短碳纳米管,经典输运模式是有效的,而对于长碳纳米管,Anderson本地化模式则适用。补充的特征长度尺度是基于碳纳米管的结构与从电测量中提取的参数很好地一致来估计的。
{"title":"Localization length of integrated multi-walled carbon nanotubes","authors":"H. Fiedler, S. Hermann, M. Rennau, S. Schulz, T. Gessner","doi":"10.1109/IITC.2014.6831852","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831852","url":null,"abstract":"We prepared CNT based vias on wafer scale. Based on the electrical characterization we extracted the localization length of the CNTs. While for short CNTs the classical transport regime is valid, the Anderson localization regime applies for longer CNTs. Supplementary the characteristic length scales were estimated based on the structure of the CNTs being in good agreement with the parameters extracted from the electrical measurements.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"55 1","pages":"159-162"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88174999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability of segmented edge seal ring for RF devices 射频器件分段边缘密封圈的可靠性
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831836
J. Gambino, R. Graf, J. Malinowski, A. Cote, W. Guthrie, K. Watson, P. Chapman, K. K. Sims, M. D. Levy, T. Aoki, G. A. Mason, M. Jaffe
RF devices are sensitive to noise coupling between devices. One source of coupling is the edge seal ring. We propose using a segmented guard ring to reduce coupling between devices. We demonstrate that the segmented guard ring is reliable for a 0.18 μm RF technology.
射频器件对器件间的噪声耦合非常敏感。联轴器的一个来源是边缘密封圈。我们建议使用分段保护环来减少设备之间的耦合。我们证明了分段保护环对于0.18 μm射频技术是可靠的。
{"title":"Reliability of segmented edge seal ring for RF devices","authors":"J. Gambino, R. Graf, J. Malinowski, A. Cote, W. Guthrie, K. Watson, P. Chapman, K. K. Sims, M. D. Levy, T. Aoki, G. A. Mason, M. Jaffe","doi":"10.1109/IITC.2014.6831836","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831836","url":null,"abstract":"RF devices are sensitive to noise coupling between devices. One source of coupling is the edge seal ring. We propose using a segmented guard ring to reduce coupling between devices. We demonstrate that the segmented guard ring is reliable for a 0.18 μm RF technology.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"73 1","pages":"367-370"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85820742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Through-silicon-via material property variation impact on full-chip reliability and timing 通硅通孔材料性能变化对全芯片可靠性和时序的影响
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831846
Moongon Jung, D. Pan, S. Lim
We study the impact of material property variations in through-silicon-via (TSV) and its surrounding structures on the reliability and performance of 3D ICs. We focus on coefficient of thermal expansion (CTE) and Young's modulus variations for TSV, barrier, and liner materials. Our toolset efficiently handles the complexity of modeling and analysis of individual TSVs as well as full-chip 3D IC designs. This tool enables 3D IC designers to accurately assess and evaluate various methods to tolerate mechanical reliability and performance variations.
我们研究了通硅通孔(TSV)及其周围结构中材料特性的变化对3D集成电路可靠性和性能的影响。我们的重点是热膨胀系数(CTE)和杨氏模量的变化TSV,屏障,和内衬材料。我们的工具集有效地处理单个tsv以及全芯片3D IC设计的建模和分析的复杂性。该工具使3D IC设计人员能够准确地评估和评估各种方法,以容忍机械可靠性和性能变化。
{"title":"Through-silicon-via material property variation impact on full-chip reliability and timing","authors":"Moongon Jung, D. Pan, S. Lim","doi":"10.1109/IITC.2014.6831846","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831846","url":null,"abstract":"We study the impact of material property variations in through-silicon-via (TSV) and its surrounding structures on the reliability and performance of 3D ICs. We focus on coefficient of thermal expansion (CTE) and Young's modulus variations for TSV, barrier, and liner materials. Our toolset efficiently handles the complexity of modeling and analysis of individual TSVs as well as full-chip 3D IC designs. This tool enables 3D IC designers to accurately assess and evaluate various methods to tolerate mechanical reliability and performance variations.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"42 1","pages":"105-108"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85465184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Advanced metal and dielectric barrier cap films for Cu low k interconnects 用于Cu低k互连的先进金属和介质阻挡帽膜
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831866
D. Priyadarshini, S. Nguyen, H. Shobha, S. Cohen, T. Shaw, E. Liniger, C. K. Hu, C. Parks, E. Adams, J. Burnham, A. Simon, G. Bonilla, A. Grill, D. Canaperi, D. Edelstein, D. Collins, M. Balseanu, M. Stolfi, J. Ren, K. Shah
Multi-layer SiN barrier film with high breakdown and low leakage is developed for Cu low k interconnects and is compared with the SiCNH barrier film used at previous technology nodes. Ultra-thin SiN barrier cap film also provides high conformality and fills recess in Cu lines observed post CMP. A significant enhancement in electro migration (EM) performance was obtained by selectively depositing Co on top of Cu lines followed by conformal multi-layer SiN barrier film. Further EM lifetime improvement is obtained by using a Co liner to form a wrap around structure with completely encapsulated Cu. An integrated in-situ preclean/ metal/dielectric cap chamber was used to avoid any oxidation of Cu/Co layers. Kinetic studies of CVD Co liner/Co cap samples show significant increase in EM activation energy (1.7 eV) over samples with dielectric only barrier film (0.9-1 eV). The complete wrap around structure with Co liner and Co cap shows improved device reliability.
针对Cu -低k互连开发了高击穿、低泄漏的多层SiN势垒膜,并与以往技术节点上使用的SiCNH势垒膜进行了比较。超薄的SiN阻挡帽膜也提供了高的一致性,并填补了CMP后观察到的Cu线的凹槽。通过选择性地在Cu线上沉积Co,然后在共形多层SiN势垒膜上沉积Co,可以显著提高电迁移(EM)性能。通过使用Co衬垫形成完全封装Cu的包裹结构,进一步提高了EM寿命。采用集成的原位预清洁/金属/介电帽室来避免Cu/Co层的氧化。化学气相沉积Co衬垫/Co帽样品的动力学研究表明,与仅具有介电阻挡膜的样品(0.9-1 eV)相比,其EM活化能(1.7 eV)显著增加。采用Co衬垫和Co帽的完整缠绕结构,提高了设备的可靠性。
{"title":"Advanced metal and dielectric barrier cap films for Cu low k interconnects","authors":"D. Priyadarshini, S. Nguyen, H. Shobha, S. Cohen, T. Shaw, E. Liniger, C. K. Hu, C. Parks, E. Adams, J. Burnham, A. Simon, G. Bonilla, A. Grill, D. Canaperi, D. Edelstein, D. Collins, M. Balseanu, M. Stolfi, J. Ren, K. Shah","doi":"10.1109/IITC.2014.6831866","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831866","url":null,"abstract":"Multi-layer SiN barrier film with high breakdown and low leakage is developed for Cu low k interconnects and is compared with the SiCNH barrier film used at previous technology nodes. Ultra-thin SiN barrier cap film also provides high conformality and fills recess in Cu lines observed post CMP. A significant enhancement in electro migration (EM) performance was obtained by selectively depositing Co on top of Cu lines followed by conformal multi-layer SiN barrier film. Further EM lifetime improvement is obtained by using a Co liner to form a wrap around structure with completely encapsulated Cu. An integrated in-situ preclean/ metal/dielectric cap chamber was used to avoid any oxidation of Cu/Co layers. Kinetic studies of CVD Co liner/Co cap samples show significant increase in EM activation energy (1.7 eV) over samples with dielectric only barrier film (0.9-1 eV). The complete wrap around structure with Co liner and Co cap shows improved device reliability.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"14 1","pages":"185-188"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84368741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Impact of die partitioning on reliability and yield of 3D DRAM 晶片分割对3D DRAM可靠性及良率的影响
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831841
Woongrae Kim, Daehyun Kim, Hee Il Hong, L. Milor, S. Lim
In this paper we present comparative study on reliability and yield analysis of 3D SDRAM designs built with two practical die partitioning styles, namely, cell/logic-mixed and cell/logic-split. In cell/logic-mixed partitioning, each die contains DRAM cells and peripheral logic components except for the last one that contains I/O logic. In our cell/logic-split style, each die contains DRAM cells and small amount of logic except the bottom die that is all logic including peripheral modules and I/O cells. Our simulation and analysis results provide useful design tradeoffs in terms of area, TSV count, reliability, power, performance, and yield.
在本文中,我们对采用单元/逻辑混合和单元/逻辑分裂两种实用的芯片划分方式构建的3D SDRAM设计的可靠性和良率进行了比较研究。在单元/逻辑混合分区中,除了最后一个包含I/O逻辑的芯片外,每个芯片都包含DRAM单元和外围逻辑组件。在我们的单元/逻辑分裂风格中,每个模块包含DRAM单元和少量逻辑,除了底部的模块是所有逻辑,包括外围模块和I/O单元。我们的模拟和分析结果在面积、TSV计数、可靠性、功率、性能和良率方面提供了有用的设计权衡。
{"title":"Impact of die partitioning on reliability and yield of 3D DRAM","authors":"Woongrae Kim, Daehyun Kim, Hee Il Hong, L. Milor, S. Lim","doi":"10.1109/IITC.2014.6831841","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831841","url":null,"abstract":"In this paper we present comparative study on reliability and yield analysis of 3D SDRAM designs built with two practical die partitioning styles, namely, cell/logic-mixed and cell/logic-split. In cell/logic-mixed partitioning, each die contains DRAM cells and peripheral logic components except for the last one that contains I/O logic. In our cell/logic-split style, each die contains DRAM cells and small amount of logic except the bottom die that is all logic including peripheral modules and I/O cells. Our simulation and analysis results provide useful design tradeoffs in terms of area, TSV count, reliability, power, performance, and yield.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"34 1","pages":"389-392"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90214970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
3D sequential integration opportunities and technology optimization 3D顺序集成机会和技术优化
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831837
P. Batude, B. Sklénard, C. Fenouillet-Béranger, B. Previtali, C. Tabone, O. Rozeau, O. Billoint, O. Turkyilmaz, H. Sarhan, S. Thuries, G. Cibrario, L. Brunet, F. Deprat, J.-E Michallet, F. Clermidy, M. Vinet
Compared with TSV-based 3D ICs, monolithic or sequential 3D ICs presents “true” benefits of going to the vertical dimension as the stacked layers can be connected at the transistor scale. The high versatility of this technology is evidenced via several examples requiring small 3D contact pitch. Monolithic 3D is shown to enable substantial gain in area and performance as compared to planar technology without scaling the transistor technology node. This paper summarizes the technological challenges of this concept: it offers a general overview of the potential solutions to obtain a high performance low temperature top transistor while keeping bottom MOSFET integrity.
与基于tsv的3D集成电路相比,单片或顺序3D集成电路呈现出垂直维度的“真正”优势,因为堆叠层可以在晶体管尺度上连接。该技术的高通用性通过几个需要小3D接触间距的例子得到了证明。与平面技术相比,单片3D可以在不缩放晶体管技术节点的情况下实现面积和性能的大幅增加。本文总结了这一概念的技术挑战:它提供了获得高性能低温顶部晶体管同时保持底部MOSFET完整性的潜在解决方案的一般概述。
{"title":"3D sequential integration opportunities and technology optimization","authors":"P. Batude, B. Sklénard, C. Fenouillet-Béranger, B. Previtali, C. Tabone, O. Rozeau, O. Billoint, O. Turkyilmaz, H. Sarhan, S. Thuries, G. Cibrario, L. Brunet, F. Deprat, J.-E Michallet, F. Clermidy, M. Vinet","doi":"10.1109/IITC.2014.6831837","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831837","url":null,"abstract":"Compared with TSV-based 3D ICs, monolithic or sequential 3D ICs presents “true” benefits of going to the vertical dimension as the stacked layers can be connected at the transistor scale. The high versatility of this technology is evidenced via several examples requiring small 3D contact pitch. Monolithic 3D is shown to enable substantial gain in area and performance as compared to planar technology without scaling the transistor technology node. This paper summarizes the technological challenges of this concept: it offers a general overview of the potential solutions to obtain a high performance low temperature top transistor while keeping bottom MOSFET integrity.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"45 1","pages":"373-376"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90949561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Restoration and pore sealing of low-k films by UV-assisted processes 紫外光辅助工艺对低钾薄膜的修复和孔隙密封
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831901
Bo Xie, Kelvin Chan, D. Cui, He Ren, Daemian Raj, E. Hollar, Sanjeev Baluja, J. Rocha, M. Naik, A. Demos
Porous low-k dielectrics are susceptible to damages by steps such as etch, ash, and CMP in the BEOL process flow. Such damages degrade the structural and electrical properties of low-k materials. To uphold the value of integrating low-k dielectrics, restoration processes are needed to repair such damages. In this work, UV-assisted silylation is used to repair damages and restore properties of porous low-k dielectrics. The repair process is able to restore carbon content, as indicated by the increase in water contact angle (WCA), and restore the electrical properties, as shown by the decrease in dielectric constant (k) and increase in break-down electrical field based on blanket-film data. On structured wafers, the post-etch repair process effects a 4-6% reduction in RC when compared to without repair. The same UV-assisted platform may be used to effect pore sealing to prevent metals used in BEOL metallization from penetrating into porous low-k materials. On structured wafers, the pore-sealing process is able to reduce Mn penetration into porous low-k when ALD MnN is used as the copper barrier.
多孔低k介电体在BEOL工艺流程中容易受到蚀刻、灰和CMP等步骤的损坏。这种损伤会降低低k材料的结构和电性能。为了维护集成低k介电体的价值,需要修复过程来修复这些损坏。在这项工作中,紫外光辅助硅基化用于修复损伤和恢复多孔低k介电材料的性能。修复过程可以恢复碳含量,表现为水接触角(WCA)的增加;修复过程可以恢复电性能,表现为介电常数(k)的降低和击穿电场的增加。在结构晶圆上,与未修复相比,蚀刻后修复工艺可使RC降低4-6%。同样的uv辅助平台可以用于孔隙密封,以防止BEOL金属化中使用的金属渗透到多孔低k材料中。在结构晶圆上,当ALD MnN用作铜屏障时,孔隙密封工艺能够减少Mn对多孔低k的渗透。
{"title":"Restoration and pore sealing of low-k films by UV-assisted processes","authors":"Bo Xie, Kelvin Chan, D. Cui, He Ren, Daemian Raj, E. Hollar, Sanjeev Baluja, J. Rocha, M. Naik, A. Demos","doi":"10.1109/IITC.2014.6831901","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831901","url":null,"abstract":"Porous low-k dielectrics are susceptible to damages by steps such as etch, ash, and CMP in the BEOL process flow. Such damages degrade the structural and electrical properties of low-k materials. To uphold the value of integrating low-k dielectrics, restoration processes are needed to repair such damages. In this work, UV-assisted silylation is used to repair damages and restore properties of porous low-k dielectrics. The repair process is able to restore carbon content, as indicated by the increase in water contact angle (WCA), and restore the electrical properties, as shown by the decrease in dielectric constant (k) and increase in break-down electrical field based on blanket-film data. On structured wafers, the post-etch repair process effects a 4-6% reduction in RC when compared to without repair. The same UV-assisted platform may be used to effect pore sealing to prevent metals used in BEOL metallization from penetrating into porous low-k materials. On structured wafers, the pore-sealing process is able to reduce Mn penetration into porous low-k when ALD MnN is used as the copper barrier.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"10 1","pages":"335-338"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80807185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Overview of embedded packaging technologies 嵌入式封装技术概述
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831844
R. Pendse
Summary form only given. Moore's law has been the foundation for increasing complexity and density of semiconductor chips and has prevailed over the years through many transitions in silicon (Si) nodes. The simultaneous scaling of density, cost and performance which is made possible by fan-out wafer level packaging may be viewed as the manifestation of Moore's law in the packaging domain. Recent developments in Fan-out Wafer level technology (also known as embedded Wafer Level Ball Grid Array, or eWLB) at STATS ChipPAC ranging from package architecture, volume manufacturing processes, as well as comprehensive methodologies for defining the optimum application space for the packaging technology over competing options will be presented. Novel integration schemes comprising multi-die, 2.5D and 3D face-to-face configurations will be presented that enable a quantum leap in performance and form factor while being cost competitive to other alternative options such as Through Silicon Via (TSV). The proliferation of the application space from traditional RF and Base Band devices in Mobile products to more advanced Application Processors and larger packages in the computing space will be presented. The future direction for this technology, including new paradigms in manufacturing processes, will also be discussed.
只提供摘要形式。摩尔定律一直是增加半导体芯片复杂性和密度的基础,并在硅(Si)节点的许多转变中盛行多年。通过扇形圆片级封装实现的密度、成本和性能的同时缩放可以看作是摩尔定律在封装领域的体现。在STATS ChipPAC上,扇形外展晶圆级技术(也称为嵌入式晶圆级球栅阵列,或eWLB)的最新发展,包括封装架构,批量制造工艺,以及在竞争选项中定义封装技术最佳应用空间的综合方法。包括多芯片、2.5D和3D面对面配置在内的新型集成方案将在性能和外形方面实现巨大飞跃,同时与其他替代方案(如通硅通孔(TSV))相比具有成本竞争力。从移动产品中的传统射频和基带设备到计算空间中更先进的应用处理器和更大的封装的应用空间的扩散将被呈现。该技术的未来方向,包括制造工艺的新范式,也将被讨论。
{"title":"Overview of embedded packaging technologies","authors":"R. Pendse","doi":"10.1109/IITC.2014.6831844","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831844","url":null,"abstract":"Summary form only given. Moore's law has been the foundation for increasing complexity and density of semiconductor chips and has prevailed over the years through many transitions in silicon (Si) nodes. The simultaneous scaling of density, cost and performance which is made possible by fan-out wafer level packaging may be viewed as the manifestation of Moore's law in the packaging domain. Recent developments in Fan-out Wafer level technology (also known as embedded Wafer Level Ball Grid Array, or eWLB) at STATS ChipPAC ranging from package architecture, volume manufacturing processes, as well as comprehensive methodologies for defining the optimum application space for the packaging technology over competing options will be presented. Novel integration schemes comprising multi-die, 2.5D and 3D face-to-face configurations will be presented that enable a quantum leap in performance and form factor while being cost competitive to other alternative options such as Through Silicon Via (TSV). The proliferation of the application space from traditional RF and Base Band devices in Mobile products to more advanced Application Processors and larger packages in the computing space will be presented. The future direction for this technology, including new paradigms in manufacturing processes, will also be discussed.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"48 1","pages":"97-98"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75464577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thermal stress control in Cu interconnects 铜互连中的热应力控制
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831888
C. Yang, B. Li, F. Baumann, P. Wang, J. Li, R. Rosenberg, D. Edelstein
Grain growth of Cu interconnects in a low k dielectric was achieved at an elevated anneal temperature of 250 °C without stress voiding related problems. For this, a TaN metal passivation layer was deposited on the plated Cu overburden surface prior to the thermal annealing process. As compared to the conventional structure annealed at 100 °C, the passivation layer enabled further Cu grain growth at the elevated temperature, which then resulted in an increased Cu grain size and improved electromigration resistance in the resulted Cu interconnects.
在250°C的高温退火条件下,Cu互连线在低k介质中实现了晶粒的生长,没有出现应力消除的问题。为此,在热退火处理之前,在镀铜覆盖层表面沉积了一层TaN金属钝化层。与传统的100℃退火结构相比,钝化层使Cu晶粒在高温下进一步长大,从而增加了Cu晶粒尺寸,提高了Cu互连的电迁移电阻。
{"title":"Thermal stress control in Cu interconnects","authors":"C. Yang, B. Li, F. Baumann, P. Wang, J. Li, R. Rosenberg, D. Edelstein","doi":"10.1109/IITC.2014.6831888","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831888","url":null,"abstract":"Grain growth of Cu interconnects in a low k dielectric was achieved at an elevated anneal temperature of 250 °C without stress voiding related problems. For this, a TaN metal passivation layer was deposited on the plated Cu overburden surface prior to the thermal annealing process. As compared to the conventional structure annealed at 100 °C, the passivation layer enabled further Cu grain growth at the elevated temperature, which then resulted in an increased Cu grain size and improved electromigration resistance in the resulted Cu interconnects.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"148 1","pages":"253-256"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74264340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foundry TSV integration and manufacturing challenges 代工TSV集成与制造挑战
Pub Date : 2014-05-20 DOI: 10.1109/IITC.2014.6831840
S. Gong, Wei Liu, Juan Boon Tan, Mahesh Bhatkar, H. Cong, J. Oswald, E. Lo, S. Siah
Foundry integration and manufacturing challenges for 2.5D TSV technology are discussed, with focus on in-line defectivity and warpage control. The major defect types and yield correlation are scrutinized. The results show that Cu out-diffusion from TSV due to oxide liner isolation defects has a bigger impact on yield compared to open TSV. The model suggests that one redundant TSV is enough to mitigate open and leakage risks. Interposer warpage behavior is also discussed. It can be influenced by related TSV process modules and optimization can be achieved to minimize the stress induced failures at wafer and die assembly levels. In-line defectivity, wafer warpage and electrical monitoring are essential for yield projection and manufacturing consistency.
讨论了2.5D TSV技术的铸造集成和制造挑战,重点是在线缺陷和翘曲控制。对主要缺陷类型和良率的相关性进行了详细分析。结果表明,由于氧化衬板隔离缺陷导致的Cu向外扩散对TSV产率的影响比开放TSV更大。该模型表明,一个冗余的TSV足以减轻打开和泄漏的风险。还讨论了中间体翘曲行为。它可以受到相关TSV工艺模块的影响,并且可以实现优化,以最大限度地减少晶圆和模具组装水平的应力引起的故障。在线缺陷、晶圆翘曲和电气监控对良率预测和制造一致性至关重要。
{"title":"Foundry TSV integration and manufacturing challenges","authors":"S. Gong, Wei Liu, Juan Boon Tan, Mahesh Bhatkar, H. Cong, J. Oswald, E. Lo, S. Siah","doi":"10.1109/IITC.2014.6831840","DOIUrl":"https://doi.org/10.1109/IITC.2014.6831840","url":null,"abstract":"Foundry integration and manufacturing challenges for 2.5D TSV technology are discussed, with focus on in-line defectivity and warpage control. The major defect types and yield correlation are scrutinized. The results show that Cu out-diffusion from TSV due to oxide liner isolation defects has a bigger impact on yield compared to open TSV. The model suggests that one redundant TSV is enough to mitigate open and leakage risks. Interposer warpage behavior is also discussed. It can be influenced by related TSV process modules and optimization can be achieved to minimize the stress induced failures at wafer and die assembly levels. In-line defectivity, wafer warpage and electrical monitoring are essential for yield projection and manufacturing consistency.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":"1 1","pages":"385-388"},"PeriodicalIF":0.0,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74594723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
2021 IEEE International Interconnect Technology Conference (IITC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1