Pub Date : 2024-06-25DOI: 10.1038/s44172-024-00222-3
Haosong He, Ashley Fly, Edward Barbour, Xiangjie Chen
The distribution of current/voltage can be further regulated by optimising the electrical connection topology, considering a particular battery thermal management systems. This study numerically investigates a 4P6S battery module with two connection topologies: 1) a straight connection topology, where the sub-modules consist of parallel-connected cells that are serial connected in a linear configuration, and 2) a parallelogram connection topology, where the sub-modules are serial connected in a parallelogram configuration. We find that the straight topology is more advantageous, as it allows the temperature gradient to be distributed among the parallel-connected cells in the sub-modules, mitigating over(dis)charging. Consequently, it achieves a 0.8% higher effective capacity than the parallelogram topology at 1C discharge, along with a higher state of health at 80.15% compared to 80% for the parallelogram topology. Notably, the straight topology results in a maximum current maldistribution of 0.24C at 1C discharge, which is considered an acceptable trade-off. Haosong He and co-authors study the impact of topology on the battery thermal management. They find the straight topology leads to more even distribution of temperature gradients among sub-modules, mitigating the over(dis)charging issue.
{"title":"Numerical investigation of module-level inhomogeneous ageing in lithium-ion batteries from temperature gradients and electrical connection topologies","authors":"Haosong He, Ashley Fly, Edward Barbour, Xiangjie Chen","doi":"10.1038/s44172-024-00222-3","DOIUrl":"10.1038/s44172-024-00222-3","url":null,"abstract":"The distribution of current/voltage can be further regulated by optimising the electrical connection topology, considering a particular battery thermal management systems. This study numerically investigates a 4P6S battery module with two connection topologies: 1) a straight connection topology, where the sub-modules consist of parallel-connected cells that are serial connected in a linear configuration, and 2) a parallelogram connection topology, where the sub-modules are serial connected in a parallelogram configuration. We find that the straight topology is more advantageous, as it allows the temperature gradient to be distributed among the parallel-connected cells in the sub-modules, mitigating over(dis)charging. Consequently, it achieves a 0.8% higher effective capacity than the parallelogram topology at 1C discharge, along with a higher state of health at 80.15% compared to 80% for the parallelogram topology. Notably, the straight topology results in a maximum current maldistribution of 0.24C at 1C discharge, which is considered an acceptable trade-off. Haosong He and co-authors study the impact of topology on the battery thermal management. They find the straight topology leads to more even distribution of temperature gradients among sub-modules, mitigating the over(dis)charging issue.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00222-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laser-scanning confocal microscopy serves as a critical instrument for microscopic research in biology. However, it suffers from low imaging speed and high phototoxicity. Here we build a novel deep compressive confocal microscope, which employs a digital micromirror device as a coding mask for single-pixel imaging and a pinhole for confocal microscopic imaging respectively. Combined with a deep learning reconstruction algorithm, our system is able to achieve high-quality confocal microscopic imaging with low phototoxicity. Our imaging experiments with fluorescent microspheres demonstrate its capability of achieving single-pixel confocal imaging with a sampling ratio of only approximately 0.03% in specific sparse scenarios. Moreover, the deep compressive confocal microscope allows single-pixel imaging at the single-photon level, thus reducing the excitation light power requirement for confocal imaging and suppressing the phototoxicity. We believe that our system has great potential for long-duration and high-speed microscopic imaging of living cells. Shuai Liu, Bin Chen and colleagues improve imaging speed and reduced phototoxicity in confocal microimaging by building a deep compressive confocal microscope. Digital micromirror acts as a coding mask for deep learning-based reconstruction algorithms.
{"title":"Compressive confocal microscopy imaging at the single-photon level with ultra-low sampling ratios","authors":"Shuai Liu, Bin Chen, Wenzhen Zou, Hao Sha, Xiaochen Feng, Sanyang Han, Xiu Li, Xuri Yao, Jian Zhang, Yongbing Zhang","doi":"10.1038/s44172-024-00236-x","DOIUrl":"10.1038/s44172-024-00236-x","url":null,"abstract":"Laser-scanning confocal microscopy serves as a critical instrument for microscopic research in biology. However, it suffers from low imaging speed and high phototoxicity. Here we build a novel deep compressive confocal microscope, which employs a digital micromirror device as a coding mask for single-pixel imaging and a pinhole for confocal microscopic imaging respectively. Combined with a deep learning reconstruction algorithm, our system is able to achieve high-quality confocal microscopic imaging with low phototoxicity. Our imaging experiments with fluorescent microspheres demonstrate its capability of achieving single-pixel confocal imaging with a sampling ratio of only approximately 0.03% in specific sparse scenarios. Moreover, the deep compressive confocal microscope allows single-pixel imaging at the single-photon level, thus reducing the excitation light power requirement for confocal imaging and suppressing the phototoxicity. We believe that our system has great potential for long-duration and high-speed microscopic imaging of living cells. Shuai Liu, Bin Chen and colleagues improve imaging speed and reduced phototoxicity in confocal microimaging by building a deep compressive confocal microscope. Digital micromirror acts as a coding mask for deep learning-based reconstruction algorithms.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00236-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1038/s44172-024-00234-z
Zhenming Liu, Yaoyao Long, Charlotte Wehner, Haoran Wen, Farrokh Ayazi
Inertial navigation on a chip has long been constrained by the noise and stability issues of micromechanical Coriolis gyroscopes, as silicon, the dominant material for microelectromechanical system devices, has reached the physical limits of its material properties. To address these challenges, this study explores silicon carbide, specifically its monocrystalline 4H polytype, as a substrate to improve gyroscope performance due to its low phonon Akhiezer dissipation and its isotropic hexagonal crystal lattice. We report on low-noise electrostatic acoustic resonant gyroscopes with mechanical quality factors exceeding several millions, fabricated on bonded 4H silicon carbide-on-insulator wafers. These gyroscopes operate using megahertz frequency bulk acoustic wave modes for large open-loop bandwidth and are tuned electrostatically using capacitive transducers created by wafer-level deep reactive ion etching. Experimental results show these gyroscopes achieve superior performance under various conditions and demonstrate higher quality factors at increased temperatures, enabling enhanced performance in an ovenized or high-temperature stabilized configuration. Zhenming Liu and colleagues show a SiC microelectromechanical system with both high quality factor and high frequency. They demonstrate the advantage of the device over the traditional Si gyroscopes and batch-fabrication possibility.
长期以来,芯片惯性导航一直受制于微机械科里奥利陀螺仪的噪声和稳定性问题,因为微机电系统设备的主要材料硅已经达到了其材料特性的物理极限。为了应对这些挑战,本研究探索将碳化硅(特别是其单晶 4H 多晶型)作为基底,以改善陀螺仪的性能,因为碳化硅的声子阿基泽耗散较低,且具有各向同性的六边形晶格。我们报告的低噪声静电声共振陀螺仪,其机械品质因数超过几百万,是在粘结的 4H 碳化硅-绝缘体晶片上制造的。这些陀螺仪使用兆赫兹频率的体声波模式运行,具有较大的开环带宽,并通过晶圆级深反应离子蚀刻产生的电容换能器进行静电调谐。实验结果表明,这些陀螺仪在各种条件下都能实现卓越的性能,并在温度升高时表现出更高的品质因数,从而提高了烘箱或高温稳定配置的性能。Zhenming Liu 及其同事展示了一种具有高品质因数和高频率的碳化硅微机电系统。他们展示了该器件相对于传统硅陀螺仪的优势以及批量制造的可能性。
{"title":"4H silicon carbide bulk acoustic wave gyroscope with ultra-high Q-factor for on-chip inertial navigation","authors":"Zhenming Liu, Yaoyao Long, Charlotte Wehner, Haoran Wen, Farrokh Ayazi","doi":"10.1038/s44172-024-00234-z","DOIUrl":"10.1038/s44172-024-00234-z","url":null,"abstract":"Inertial navigation on a chip has long been constrained by the noise and stability issues of micromechanical Coriolis gyroscopes, as silicon, the dominant material for microelectromechanical system devices, has reached the physical limits of its material properties. To address these challenges, this study explores silicon carbide, specifically its monocrystalline 4H polytype, as a substrate to improve gyroscope performance due to its low phonon Akhiezer dissipation and its isotropic hexagonal crystal lattice. We report on low-noise electrostatic acoustic resonant gyroscopes with mechanical quality factors exceeding several millions, fabricated on bonded 4H silicon carbide-on-insulator wafers. These gyroscopes operate using megahertz frequency bulk acoustic wave modes for large open-loop bandwidth and are tuned electrostatically using capacitive transducers created by wafer-level deep reactive ion etching. Experimental results show these gyroscopes achieve superior performance under various conditions and demonstrate higher quality factors at increased temperatures, enabling enhanced performance in an ovenized or high-temperature stabilized configuration. Zhenming Liu and colleagues show a SiC microelectromechanical system with both high quality factor and high frequency. They demonstrate the advantage of the device over the traditional Si gyroscopes and batch-fabrication possibility.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00234-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spinouts bring women in engineering together — here’s why","authors":"Brittany Harris, Jade Cohen, Irena Tyshyna, Anna Baldycheva","doi":"10.1038/s44172-024-00228-x","DOIUrl":"10.1038/s44172-024-00228-x","url":null,"abstract":"This International Women in Engineering Day (INWED 2024) Communications Engineering celebrates women in innovative startups.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00228-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Compared with previous generations, fifth-generation communications can provide faster download and upload speeds and support a greater number of connected devices. Integrating fifth-generation signals with optical wireless communication systems provides promising ways to afford higher transmission rates and faster wireless connectivity. Here we report a fifth-generation wavelength-division-multiplexing-based bidirectional optical wireless communication system with signal remodulation employing cascaded reflective semiconductor optical amplifiers to effectively remove the downstream data for uplink transmission. It shows a fifth-generation wavelength-division-multiplexing-based bidirectional optical wireless communication system using four wavelengths for communication. The uplink performance is substantially enhanced by using two reflective semiconductor optical amplifiers to remove the downstream data. The system achieves an aggregate transmission rate of 36.4 Gbit/s for both downlink and uplink transmissions over a 100-m optical wireless link. This demonstrated fifth-generation wavelength-division-multiplexing-based bidirectional optical wireless communication system employing cascaded reflective semiconductor optical amplifiers holds great potential for enhancing fifth-generation advanced communication capabilities. Lu et al. demonstrated a bidirectional optical wireless communication system for 5G communications using wavelength-division multiplexing and cascaded reflective semiconductor optical amplifiers. The system achieves an aggregate rate of 36.4 Gb/s over a 100-m optical wireless link, enhancing 5G communication capabilities.
{"title":"5G wavelength-division-multiplexing-based bidirectional optical wireless communication system with signal remodulation employing cascaded reflective semiconductor optical amplifiers","authors":"Hai-Han Lu, Chung-Yi Li, Xu-Hong Huang, Yu-Yao Bai, Wei-Wen Hsu, Yu-Chen Chung, Jia-Ming Lu, Kelper Okram","doi":"10.1038/s44172-024-00232-1","DOIUrl":"10.1038/s44172-024-00232-1","url":null,"abstract":"Compared with previous generations, fifth-generation communications can provide faster download and upload speeds and support a greater number of connected devices. Integrating fifth-generation signals with optical wireless communication systems provides promising ways to afford higher transmission rates and faster wireless connectivity. Here we report a fifth-generation wavelength-division-multiplexing-based bidirectional optical wireless communication system with signal remodulation employing cascaded reflective semiconductor optical amplifiers to effectively remove the downstream data for uplink transmission. It shows a fifth-generation wavelength-division-multiplexing-based bidirectional optical wireless communication system using four wavelengths for communication. The uplink performance is substantially enhanced by using two reflective semiconductor optical amplifiers to remove the downstream data. The system achieves an aggregate transmission rate of 36.4 Gbit/s for both downlink and uplink transmissions over a 100-m optical wireless link. This demonstrated fifth-generation wavelength-division-multiplexing-based bidirectional optical wireless communication system employing cascaded reflective semiconductor optical amplifiers holds great potential for enhancing fifth-generation advanced communication capabilities. Lu et al. demonstrated a bidirectional optical wireless communication system for 5G communications using wavelength-division multiplexing and cascaded reflective semiconductor optical amplifiers. The system achieves an aggregate rate of 36.4 Gb/s over a 100-m optical wireless link, enhancing 5G communication capabilities.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00232-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1038/s44172-024-00231-2
Sankara Arunachalam, Muhammad Subkhi Sadullah, Himanshu Mishra
Numerous natural and engineering scenarios necessitate the entrapment of air pockets or bubbles on submerged surfaces. Current technologies for bubble entrapment rely on perfluorocarbon coatings, limiting their sustainability. Herein, we investigated the efficacy of doubly reentrant cavity architecture towards realizing gas-entrapping microtextured surfaces under static and dynamic pressure cycling. The effects of positive (>1 atm), negative (<1 atm), and positive–negative cycles on the stability the gas entrapment inside individual doubly reentrant cavities were studied across a range of pressures, ramp rates, intercycle intervals, and water-column heights. Remarkably, the fate of the trapped air under pressure cycling fell into either of the following regimes: the bubble (i) monotonically depleted (unstable), (ii) remained indefinitely stable (stable), or (iii) started growing (bubble growth). This hitherto unrealized richness of underwater bubble dynamics should guide the development of coating-free technologies and help us understand the curious lives of air-breathing aquatic and marine insects. Sankara Arunachalam and colleagues explore the effects of cyclic pressure on the fate of air trapped inside microtextured surfaces submerged in water. The findings guide the design and function of gas-entrapping microtextured surfaces and offer insights into survival strategies of underwater breathers.
{"title":"Insect-inspired breathing interfaces: investigating robustness of coating-free gas entrapping microtextured surfaces under pressure cycles","authors":"Sankara Arunachalam, Muhammad Subkhi Sadullah, Himanshu Mishra","doi":"10.1038/s44172-024-00231-2","DOIUrl":"10.1038/s44172-024-00231-2","url":null,"abstract":"Numerous natural and engineering scenarios necessitate the entrapment of air pockets or bubbles on submerged surfaces. Current technologies for bubble entrapment rely on perfluorocarbon coatings, limiting their sustainability. Herein, we investigated the efficacy of doubly reentrant cavity architecture towards realizing gas-entrapping microtextured surfaces under static and dynamic pressure cycling. The effects of positive (>1 atm), negative (<1 atm), and positive–negative cycles on the stability the gas entrapment inside individual doubly reentrant cavities were studied across a range of pressures, ramp rates, intercycle intervals, and water-column heights. Remarkably, the fate of the trapped air under pressure cycling fell into either of the following regimes: the bubble (i) monotonically depleted (unstable), (ii) remained indefinitely stable (stable), or (iii) started growing (bubble growth). This hitherto unrealized richness of underwater bubble dynamics should guide the development of coating-free technologies and help us understand the curious lives of air-breathing aquatic and marine insects. Sankara Arunachalam and colleagues explore the effects of cyclic pressure on the fate of air trapped inside microtextured surfaces submerged in water. The findings guide the design and function of gas-entrapping microtextured surfaces and offer insights into survival strategies of underwater breathers.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00231-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1038/s44172-024-00229-w
Ce Liu, Baobao Lin, Guohua Yuan, Zhi Geng, Zhe Zhao, Jiacheng Wang, Jingyu Shao, Zhenqi Wang, Yang Xu, Xujuan Yang, Chang Liu, Yingmei Feng, Xin Fan, Jing Wang, Lili Ren, Yan Xiao, Conghui Wang, Guang Shen, Yi Yang, Chao Zhao, Yinqing Li, Peng Liu, Jingwei Bai
Nucleic acid tests are essential for the accurate diagnosis and control of infectious diseases. However, current assays are not easily scalable for a large population, due to the requirement of laboratory settings or special equipment. Here, we developed an integrated box for instant nucleic acid screening which fully integrates nucleic acid release, amplification, and results visualization for self-service standalone test. Importantly, the operation of the box runs on a novel gamepad-like interface, which allows deployment of the box in home settings and operation by users without any prior professional training. The performance of the box is empowered by an RNA extraction-free sample inactivation process and nested recombinase polymerase amplification chemistry and exhibits sensitivity comparable to reverse transcription-quantitative polymerase chain reaction with high specificity for severe acute respiratory syndrome coronavirus 2 RNA in a reaction time of 30 minutes directly from fresh swab sample to results. These innovations make the box a novel platform for a convenient, accurate, and deployable point-of-care testing scheme. Ce Liu, Baobao Lin and colleagues report a rapid and straightforward nucleic acid screening test requiring no professional training or formal medical setting. The device runs on a novel gamepad-like interface and fully integrates nucleic acid release, amplification, and visualization.
{"title":"A gamepad-like nucleic acid testing device for rapid detection of SARS-CoV-2 via visible nested recombinase polymerase amplification","authors":"Ce Liu, Baobao Lin, Guohua Yuan, Zhi Geng, Zhe Zhao, Jiacheng Wang, Jingyu Shao, Zhenqi Wang, Yang Xu, Xujuan Yang, Chang Liu, Yingmei Feng, Xin Fan, Jing Wang, Lili Ren, Yan Xiao, Conghui Wang, Guang Shen, Yi Yang, Chao Zhao, Yinqing Li, Peng Liu, Jingwei Bai","doi":"10.1038/s44172-024-00229-w","DOIUrl":"10.1038/s44172-024-00229-w","url":null,"abstract":"Nucleic acid tests are essential for the accurate diagnosis and control of infectious diseases. However, current assays are not easily scalable for a large population, due to the requirement of laboratory settings or special equipment. Here, we developed an integrated box for instant nucleic acid screening which fully integrates nucleic acid release, amplification, and results visualization for self-service standalone test. Importantly, the operation of the box runs on a novel gamepad-like interface, which allows deployment of the box in home settings and operation by users without any prior professional training. The performance of the box is empowered by an RNA extraction-free sample inactivation process and nested recombinase polymerase amplification chemistry and exhibits sensitivity comparable to reverse transcription-quantitative polymerase chain reaction with high specificity for severe acute respiratory syndrome coronavirus 2 RNA in a reaction time of 30 minutes directly from fresh swab sample to results. These innovations make the box a novel platform for a convenient, accurate, and deployable point-of-care testing scheme. Ce Liu, Baobao Lin and colleagues report a rapid and straightforward nucleic acid screening test requiring no professional training or formal medical setting. The device runs on a novel gamepad-like interface and fully integrates nucleic acid release, amplification, and visualization.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00229-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141439777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1038/s44172-024-00230-3
Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim
Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.
扫描电子显微镜(SEM)利用电子波长进行纳米级成像,需要对聚焦、定焦器和光圈对准等参数进行精确调整。然而,传统方法依赖于技术熟练的人员,而且耗费时间。现有的自动聚焦和自动定焦技术由于这些参数的相互依赖性和样品的多样性而面临挑战。我们提出了一种光束核估计方法,可独立优化扫描电子显微镜参数,而不受样本变化的影响。该方法性能稳健,聚焦平均误差为 1.00 μm,定影平均误差为 0.30%,光圈对准平均误差为 0.79%,超过了基于锐度的方法(聚焦平均误差为 6.42 μm,定影平均误差为 2.32%,缺乏光圈对准功能)。我们的方法通过盲解卷积解决了扫描电子显微镜参数之间的相互作用,促进了快速和自动优化,从而提高了精度、效率以及在科学和工业领域的适用性。Yunje Cho 及其同事通过高精度自动聚焦和自动散焦提高了扫描电子显微镜的分辨率。他们的方法无需预先了解样品即可运行。
{"title":"Automatic beam optimization method for scanning electron microscopy based on electron beam Kernel estimation","authors":"Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim","doi":"10.1038/s44172-024-00230-3","DOIUrl":"10.1038/s44172-024-00230-3","url":null,"abstract":"Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00230-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
While physical reservoir computing is a promising way to achieve low power consumption neuromorphic computing, its computational performance is still insufficient at a practical level. One promising approach to improving its performance is deep reservoir computing, in which the component reservoirs are multi-layered. However, all of the deep-reservoir schemes reported so far have been effective only for simulation reservoirs and limited physical reservoirs, and there have been no reports of nanodevice implementations. Here, as an ionics-based neuromorphic nanodevice implementation of deep-reservoir computing, we report a demonstration of deep physical reservoir computing with maximum of four layers using an ion gating reservoir, which is a small and high-performance physical reservoir. While the previously reported deep-reservoir scheme did not improve the performance of the ion gating reservoir, our deep-ion gating reservoir achieved a normalized mean squared error of 9.08 × 10−3 on a second-order nonlinear autoregressive moving average task, which is the best performance of any physical reservoir so far reported in this task. More importantly, the device outperformed full simulation reservoir computing. The dramatic performance improvement of the ion gating reservoir with our deep-reservoir computing architecture paves the way for high-performance, large-scale, physical neural network devices. Daiki Nishioka and colleagues show a nanodevice implementation of deep reservoir computing using an ion-gating reservoir, achieving record-low error rates on a complex computational task. This device is more efficient and scalable for brain-like computing systems exploiting physical systems.
{"title":"A high-performance deep reservoir computer experimentally demonstrated with ion-gating reservoirs","authors":"Daiki Nishioka, Takashi Tsuchiya, Masataka Imura, Yasuo Koide, Tohru Higuchi, Kazuya Terabe","doi":"10.1038/s44172-024-00227-y","DOIUrl":"10.1038/s44172-024-00227-y","url":null,"abstract":"While physical reservoir computing is a promising way to achieve low power consumption neuromorphic computing, its computational performance is still insufficient at a practical level. One promising approach to improving its performance is deep reservoir computing, in which the component reservoirs are multi-layered. However, all of the deep-reservoir schemes reported so far have been effective only for simulation reservoirs and limited physical reservoirs, and there have been no reports of nanodevice implementations. Here, as an ionics-based neuromorphic nanodevice implementation of deep-reservoir computing, we report a demonstration of deep physical reservoir computing with maximum of four layers using an ion gating reservoir, which is a small and high-performance physical reservoir. While the previously reported deep-reservoir scheme did not improve the performance of the ion gating reservoir, our deep-ion gating reservoir achieved a normalized mean squared error of 9.08 × 10−3 on a second-order nonlinear autoregressive moving average task, which is the best performance of any physical reservoir so far reported in this task. More importantly, the device outperformed full simulation reservoir computing. The dramatic performance improvement of the ion gating reservoir with our deep-reservoir computing architecture paves the way for high-performance, large-scale, physical neural network devices. Daiki Nishioka and colleagues show a nanodevice implementation of deep reservoir computing using an ion-gating reservoir, achieving record-low error rates on a complex computational task. This device is more efficient and scalable for brain-like computing systems exploiting physical systems.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00227-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resistive Random Access Memories (ReRAM) arrays provides a promising basement to deploy neural network accelerators based on near or in memory computing. However most popular accelerators rely on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM variability and voltage drop in the memory array, and thus need sophisticated readout circuits. Here we propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM synapses, used in a resistive bridge fashion. We fabricated a network layer with up to 23 inputs that we extrapolated to large numbers of inputs through simulation. Defining proper programming and reading conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop, compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer technology. Mona Ezzadeen and co-authors demonstrate a compute-in memory cell with a low consumed power per operation. In silicon implementation with 23 inputs is successfully used to solve benchmarking tasks of digit recognition.
{"title":"Implementation of binarized neural networks immune to device variation and voltage drop employing resistive random access memory bridges and capacitive neurons","authors":"Mona Ezzadeen, Atreya Majumdar, Olivier Valorge, Niccolo Castellani, Valentin Gherman, Guillaume Regis, Bastien Giraud, Jean-Philippe Noel, Valentina Meli, Marc Bocquet, Francois Andrieu, Damien Querlioz, Jean-Michel Portal","doi":"10.1038/s44172-024-00226-z","DOIUrl":"10.1038/s44172-024-00226-z","url":null,"abstract":"Resistive Random Access Memories (ReRAM) arrays provides a promising basement to deploy neural network accelerators based on near or in memory computing. However most popular accelerators rely on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM variability and voltage drop in the memory array, and thus need sophisticated readout circuits. Here we propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM synapses, used in a resistive bridge fashion. We fabricated a network layer with up to 23 inputs that we extrapolated to large numbers of inputs through simulation. Defining proper programming and reading conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop, compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer technology. Mona Ezzadeen and co-authors demonstrate a compute-in memory cell with a low consumed power per operation. In silicon implementation with 23 inputs is successfully used to solve benchmarking tasks of digit recognition.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00226-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141425138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}