首页 > 最新文献

地球科学最新文献

英文 中文
IF:
Seasonal to Interannual Cross-Scale Energy Transfer Variability: Observational Insight From the Santa Barbara Channel 季节到年际跨尺度能量传输变率:来自圣巴巴拉海峡的观测见解
IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2026-02-11 DOI: 10.1029/2025GL117885
Sara Taylor, Andrew F. Thompson, Luke Kachelein, Patrice Klein

Kinetic energy (KE) transfer between spatial scales contributes to the ocean's energy budget by linking scales of KE supply and KE dissipation. Numerical simulations have indicated that for scales smaller than the baroclinic deformation radius, cross-scale KE transfer has complex spatial and temporal variability, modulated by mixed layer properties, fronts, and eddies. Here, over a decade of upper-ocean surface velocity data, collected from high-frequency radar within the Santa Barbara Channel, are used to estimate cross-scale KE transfer. The transfer of KE across 7 km has strong seasonal and interannual variations linked to energy exchange with the atmosphere. This study observationally confirms (a) the importance of the surface divergence field in determining the direction of the KE transfer and (b) the equi-partitioning of KE transfer between divergent and straining motions. The temporal variability in KE transfer suggests that surface forcing influences the long-term redistribution of energy between scales.

动能在空间尺度上的传递通过连接动能供给和动能耗散的尺度,对海洋的能量收支有贡献。数值模拟结果表明,在小于斜压变形半径的尺度上,跨尺度KE传输具有复杂的时空变异性,受混合层性质、锋面和涡旋的调制。在这里,使用从圣巴巴拉海峡内的高频雷达收集的十多年的上层海洋表面速度数据来估计跨尺度的KE传输。在与大气的能量交换过程中,穿越7 km的能量转移具有强烈的季节和年际变化。该研究通过观测证实了(a)表面散度场在确定KE传递方向方面的重要性,以及(b) KE传递在发散运动和应变运动之间的均匀分配。能量转移的时间变异性表明,地表强迫影响尺度间能量的长期再分配。
{"title":"Seasonal to Interannual Cross-Scale Energy Transfer Variability: Observational Insight From the Santa Barbara Channel","authors":"Sara Taylor,&nbsp;Andrew F. Thompson,&nbsp;Luke Kachelein,&nbsp;Patrice Klein","doi":"10.1029/2025GL117885","DOIUrl":"https://doi.org/10.1029/2025GL117885","url":null,"abstract":"<p>Kinetic energy (KE) transfer between spatial scales contributes to the ocean's energy budget by linking scales of KE supply and KE dissipation. Numerical simulations have indicated that for scales smaller than the baroclinic deformation radius, cross-scale KE transfer has complex spatial and temporal variability, modulated by mixed layer properties, fronts, and eddies. Here, over a decade of upper-ocean surface velocity data, collected from high-frequency radar within the Santa Barbara Channel, are used to estimate cross-scale KE transfer. The transfer of KE across 7 km has strong seasonal and interannual variations linked to energy exchange with the atmosphere. This study observationally confirms (a) the importance of the surface divergence field in determining the direction of the KE transfer and (b) the equi-partitioning of KE transfer between divergent and straining motions. The temporal variability in KE transfer suggests that surface forcing influences the long-term redistribution of energy between scales.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"53 4","pages":""},"PeriodicalIF":4.6,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GL117885","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146154894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multiple-interdependency risk assessment model with time-varying reasoning capabilities for long-distance water diversion projects 具有时变推理能力的长距离调水工程多相互依赖风险评估模型
IF 6.4 1区 地球科学 Q1 ENGINEERING, CIVIL Pub Date : 2026-02-11 DOI: 10.1016/j.jhydrol.2026.135110
Zihan Chen, Boran Zhu, Shilei Zhang, Ruihua Han, Jin Bai, Junqiang Lin, Youzhi Liu, Bo Wang
{"title":"A multiple-interdependency risk assessment model with time-varying reasoning capabilities for long-distance water diversion projects","authors":"Zihan Chen, Boran Zhu, Shilei Zhang, Ruihua Han, Jin Bai, Junqiang Lin, Youzhi Liu, Bo Wang","doi":"10.1016/j.jhydrol.2026.135110","DOIUrl":"https://doi.org/10.1016/j.jhydrol.2026.135110","url":null,"abstract":"","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"91 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glaucony formation during warm phases of Earth history: Lessons learnt from Upper Cretaceous greensand giants 地球历史暖期海绿石的形成:从上白垩纪绿岩和巨岩中吸取的教训
IF 3.9 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-11 DOI: 10.1016/j.gloplacha.2026.105374
Markus Wilmsen, Niklas Metzner, Udita Bansal, Michaela Berensmeier, Philipp Böning
{"title":"Glaucony formation during warm phases of Earth history: Lessons learnt from Upper Cretaceous greensand giants","authors":"Markus Wilmsen, Niklas Metzner, Udita Bansal, Michaela Berensmeier, Philipp Böning","doi":"10.1016/j.gloplacha.2026.105374","DOIUrl":"https://doi.org/10.1016/j.gloplacha.2026.105374","url":null,"abstract":"","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"277 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbital forcing regulated Arabian Sea denitrification during the late Pleistocene 轨道强迫调节了晚更新世阿拉伯海的反硝化作用
IF 3.9 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL Pub Date : 2026-02-11 DOI: 10.1016/j.gloplacha.2026.105373
Rahul Pawar, Dharmendra Pratap Singh, Rajeev Saraswat, Abhayanand Singh Maurya
{"title":"Orbital forcing regulated Arabian Sea denitrification during the late Pleistocene","authors":"Rahul Pawar, Dharmendra Pratap Singh, Rajeev Saraswat, Abhayanand Singh Maurya","doi":"10.1016/j.gloplacha.2026.105373","DOIUrl":"https://doi.org/10.1016/j.gloplacha.2026.105373","url":null,"abstract":"","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"24 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146161084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Martian Atmospheric Loss Through Foreshock Transient Events 火星大气损失通过前震瞬态事件
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2026-02-11 DOI: 10.1029/2025gl120618
Alexandros C. Cooke-Politikos, Sergey Shuvalov, Yaxue Dong, Yi Qi, David A. Brain, Jasper S. Halekas
At Mars, the MAVEN spacecraft has made observations of Hot Flow Anomalies (HFAs) in the foreshock. Due to the bow shock's proximity to the planet, it is theorized that HFAs contribute to atmospheric escape at Mars through the excavation of ionospheric ions. A case study investigates one HFA observation, with parameters suggesting a novel mechanism for planetary ion extraction. The event is further characterized by elevated number densities of <span data-altimg="/cms/asset/1a45c7bf-c36a-4bab-b8fb-e19131ab5516/grl72041-math-0001.png"></span><mjx-container ctxtmenu_counter="133" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/grl72041-math-0001.png"><mjx-semantics><mjx-mrow><mjx-mrow><mjx-msup data-semantic-children="0,1" data-semantic- data-semantic-role="latinletter" data-semantic-speech="normal upper O Superscript plus" data-semantic-type="superscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c></mjx-c></mjx-mi><mjx-script style="vertical-align: 0.363em;"><mjx-mo data-semantic- data-semantic-parent="2" data-semantic-role="addition" data-semantic-type="operator" size="s"><mjx-c></mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display="inline" unselectable="on"><math altimg="urn:x-wiley:00948276:media:grl72041:grl72041-math-0001" display="inline" location="graphic/grl72041-math-0001.png" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><msup data-semantic-="" data-semantic-children="0,1" data-semantic-role="latinletter" data-semantic-speech="normal upper O Superscript plus" data-semantic-type="superscript"><mi data-semantic-="" data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" mathvariant="normal">O</mi><mo data-semantic-="" data-semantic-parent="2" data-semantic-role="addition" data-semantic-type="operator">+</mo></msup></mrow></mrow>${mathrm{O}}^{+}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg="/cms/asset/3f883c89-45a8-4785-94e5-474c2fc4584c/grl72041-math-0002.png"></span><mjx-container ctxtmenu_counter="134" ctxtmenu_oldtabindex="1" jax="CHTML" role="application" sre-explorer- style="font-size: 103%; position: relative;" tabindex="0"><mjx-math aria-hidden="true" location="graphic/grl72041-math-0002.png"><mjx-semantics><mjx-mrow><mjx-mrow><mjx-msubsup data-semantic-children="0,1,2" data-semantic-collapsed="(4 (3 0 1) 2)" data-semantic- data-semantic-role="latinletter" data-semantic-speech="normal upper O 2 Superscript plus" data-semantic-type="subsup"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semanti
在火星上,MAVEN宇宙飞船观测到了前震中的热流异常(hfa)。由于弓形激波靠近火星,理论上hfa通过挖掘电离层离子有助于火星的大气逃逸。一个案例研究调查了一次HFA观测,其参数表明行星离子提取的新机制。该事件的进一步特征是在电流片交叉之前观察到的O+${mathrm{O}}^{+}$和O2+${mathrm{O}}_{2}^{+}$离子的数量密度升高。对一组91个事件进行了统计研究,使火星上HFA的频率估计为1次/天。该事件的估计离子逸出率约为火星标称条件下典型离子逸出率的9%。对进一步事件的计算表明,名义条件的逃逸率在1%到9%之间。这代表了对整体逃逸的适度贡献,突出了一条潜在的未被探索的途径。
{"title":"Martian Atmospheric Loss Through Foreshock Transient Events","authors":"Alexandros C. Cooke-Politikos, Sergey Shuvalov, Yaxue Dong, Yi Qi, David A. Brain, Jasper S. Halekas","doi":"10.1029/2025gl120618","DOIUrl":"https://doi.org/10.1029/2025gl120618","url":null,"abstract":"At Mars, the MAVEN spacecraft has made observations of Hot Flow Anomalies (HFAs) in the foreshock. Due to the bow shock's proximity to the planet, it is theorized that HFAs contribute to atmospheric escape at Mars through the excavation of ionospheric ions. A case study investigates one HFA observation, with parameters suggesting a novel mechanism for planetary ion extraction. The event is further characterized by elevated number densities of &lt;span data-altimg=\"/cms/asset/1a45c7bf-c36a-4bab-b8fb-e19131ab5516/grl72041-math-0001.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"133\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/grl72041-math-0001.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-mrow&gt;&lt;mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper O Superscript plus\" data-semantic-type=\"superscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: 0.363em;\"&gt;&lt;mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" size=\"s\"&gt;&lt;mjx-c&gt;&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-script&gt;&lt;/mjx-msup&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-semantics&gt;&lt;/mjx-math&gt;&lt;mjx-assistive-mml display=\"inline\" unselectable=\"on\"&gt;&lt;math altimg=\"urn:x-wiley:00948276:media:grl72041:grl72041-math-0001\" display=\"inline\" location=\"graphic/grl72041-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;semantics&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper O Superscript plus\" data-semantic-type=\"superscript\"&gt;&lt;mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\"&gt;O&lt;/mi&gt;&lt;mo data-semantic-=\"\" data-semantic-parent=\"2\" data-semantic-role=\"addition\" data-semantic-type=\"operator\"&gt;+&lt;/mo&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;${mathrm{O}}^{+}$&lt;/annotation&gt;&lt;/semantics&gt;&lt;/math&gt;&lt;/mjx-assistive-mml&gt;&lt;/mjx-container&gt; and &lt;span data-altimg=\"/cms/asset/3f883c89-45a8-4785-94e5-474c2fc4584c/grl72041-math-0002.png\"&gt;&lt;/span&gt;&lt;mjx-container ctxtmenu_counter=\"134\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"&gt;&lt;mjx-math aria-hidden=\"true\" location=\"graphic/grl72041-math-0002.png\"&gt;&lt;mjx-semantics&gt;&lt;mjx-mrow&gt;&lt;mjx-mrow&gt;&lt;mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"normal upper O 2 Superscript plus\" data-semantic-type=\"subsup\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semanti","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"32 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pivotal Role of Cloud-Planetary Boundary Layer Coupling to Explain Contrasting Aerosol-Cloud Relationships 云-行星边界层耦合在解释不同气溶胶-云关系中的关键作用
IF 5.2 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2026-02-11 DOI: 10.1029/2025gl119748
Jiannong Quan, Yangang Liu, Yang Gao, Tianning Su, Yubing Pan, Pengkun Ma, Qianqian Wang, Xingcan Jia
The radiative effect of aerosol on cloud albedo via altering cloud droplet effective radius (re) is a major uncertainty in the Earth's climate system. Remote sensing studies have reported either negative or positive relationships between re and aerosol number concentration (Na) or other aerosol proxies. However, there are much fewer in situ observational evidences and physical explanation remains elusive for the contrasting Na-re relationships. Here we quantify the Na-re relationship by using in situ aircraft measurements, together with a re decomposition method. Our analysis reveals that the cloud-planetary boundary layer (PBL) coupling plays a pivotal role on the Na-re relationship. Quantitative re decomposition indicates that the contrasting Na-re relationships in two cloud-PBL coupling regimes result from different balances of four distinct aspects. The widely recognized number effect may be outweighed by the joint effects of the remaining three that have been rarely investigated and largely ignored in Na-re parameterizations.
气溶胶通过改变云滴有效半径(re)对云反照率的辐射效应是地球气候系统中的一个主要不确定性。遥感研究报告了re与气溶胶数浓度(Na)或其他气溶胶代用物之间的负或正关系。然而,现场观测证据少得多,对Na-re关系的物理解释仍然难以捉摸。在这里,我们通过使用现场飞机测量和再分解方法来量化Na-re关系。我们的分析表明,云-行星边界层(PBL)耦合在Na-re关系中起关键作用。定量重分解表明,两种云- pbl耦合机制中Na-re关系的差异是由四个不同方面的不同平衡造成的。在Na-re参数化中很少被研究和很大程度上被忽略的其余三个因素的联合效应可能会抵消广泛认可的数字效应。
{"title":"Pivotal Role of Cloud-Planetary Boundary Layer Coupling to Explain Contrasting Aerosol-Cloud Relationships","authors":"Jiannong Quan, Yangang Liu, Yang Gao, Tianning Su, Yubing Pan, Pengkun Ma, Qianqian Wang, Xingcan Jia","doi":"10.1029/2025gl119748","DOIUrl":"https://doi.org/10.1029/2025gl119748","url":null,"abstract":"The radiative effect of aerosol on cloud albedo via altering cloud droplet effective radius (<i>r</i><sub><i>e</i></sub>) is a major uncertainty in the Earth's climate system. Remote sensing studies have reported either negative or positive relationships between <i>r</i><sub><i>e</i></sub> and aerosol number concentration (<i>N</i><sub><i>a</i></sub>) or other aerosol proxies. However, there are much fewer in situ observational evidences and physical explanation remains elusive for the contrasting <i>N</i><sub><i>a</i></sub>-<i>r</i><sub><i>e</i></sub> relationships. Here we quantify the <i>N</i><sub><i>a</i></sub>-<i>r</i><sub><i>e</i></sub> relationship by using in situ aircraft measurements, together with a <i>r</i><sub><i>e</i></sub> decomposition method. Our analysis reveals that the cloud-planetary boundary layer (<i>PBL</i>) coupling plays a pivotal role on the <i>N</i><sub><i>a</i></sub>-<i>r</i><sub><i>e</i></sub> relationship. Quantitative <i>r</i><sub><i>e</i></sub> decomposition indicates that the contrasting <i>N</i><sub><i>a</i></sub>-<i>r</i><sub><i>e</i></sub> relationships in two cloud-<i>PBL</i> coupling regimes result from different balances of four distinct aspects. The widely recognized number effect may be outweighed by the joint effects of the remaining three that have been rarely investigated and largely ignored in <i>N</i><sub><i>a</i></sub>-<i>r</i><sub><i>e</i></sub> parameterizations.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"92 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sulfur speciation in silicate melts at high pressure 硅酸盐中的硫形态在高压下熔化
IF 5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2026-02-11 DOI: 10.1016/j.gca.2026.02.003
Richard W. Thomas, Bernard J. Wood
{"title":"Sulfur speciation in silicate melts at high pressure","authors":"Richard W. Thomas, Bernard J. Wood","doi":"10.1016/j.gca.2026.02.003","DOIUrl":"https://doi.org/10.1016/j.gca.2026.02.003","url":null,"abstract":"","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"166 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Precision Crop Water Footprint Quantification Framework Based on Data Assimilation 基于数据同化的作物水足迹高精度量化框架
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-02-11 DOI: 10.1029/2024wr039817
Ting Bai, Shikun Sun, Yali Yin, Dongmei Zhao, Hao Dong, Jing Xue, Jinfeng Zhao, Yubao Wang, Pute Wu
Agricultural production is a major consumer of water resources, and the crop water footprint (CWF) serves as a comprehensive metric for assessing agricultural water use efficiency and its associated impacts, thereby providing new insights for agricultural water management. However, quantitative studies of regional CWF require extensive ground observations and are often constrained by scale effects, limited accuracy, and spatiotemporal discontinuities. To address these limitations, we developed a high-precision CWF quantification framework that assimilates remotely sensed leaf area index and downscaled soil moisture into the World Food Studies crop model using the Ensemble Kalman Filter. Application of the proposed framework in the Hetao Irrigation District successfully mapped the high-precision maize production water footprint, revealing a spatial pattern characterized by higher values in the eastern and western regions and lower values in the central area. The mean green water footprint, blue water footprint, and total water footprint of maize were 0.045 m3/kg, 0.660 m3/kg, and 0.705 m3/kg, respectively. Compared with estimates derived from remote sensing evapotranspiration products and the FAO Penman–Monteith method, the data assimilation framework improved the accuracy and spatial representativeness of maize water footprint estimation. Overall, the proposed framework provides a reliable tool for quantifying agricultural water-use efficiency and lays a data and methodological foundation for refined water resources management.
农业生产是水资源的主要消耗者,作物水足迹(CWF)是评估农业用水效率及其相关影响的综合指标,从而为农业用水管理提供了新的见解。然而,区域CWF的定量研究需要大量的地面观测,并且经常受到尺度效应、有限的精度和时空不连续性的限制。为了解决这些限制,我们开发了一个高精度CWF量化框架,该框架使用集合卡尔曼滤波器将遥感叶面积指数和缩小的土壤湿度同化到世界粮食研究作物模型中。该框架在河套灌区的应用成功绘制了高精度玉米生产水足迹图谱,揭示了玉米生产水足迹东西部高、中部低的空间格局。玉米的平均绿水足迹、蓝水足迹和总水足迹分别为0.045 m3/kg、0.660 m3/kg和0.705 m3/kg。与遥感蒸散发产品估算值和FAO Penman-Monteith方法估算值相比,数据同化框架提高了玉米水足迹估算值的准确性和空间代表性。总体而言,所提出的框架为农业用水效率的量化提供了可靠的工具,并为精炼水资源管理奠定了数据和方法基础。
{"title":"A High-Precision Crop Water Footprint Quantification Framework Based on Data Assimilation","authors":"Ting Bai, Shikun Sun, Yali Yin, Dongmei Zhao, Hao Dong, Jing Xue, Jinfeng Zhao, Yubao Wang, Pute Wu","doi":"10.1029/2024wr039817","DOIUrl":"https://doi.org/10.1029/2024wr039817","url":null,"abstract":"Agricultural production is a major consumer of water resources, and the crop water footprint (CWF) serves as a comprehensive metric for assessing agricultural water use efficiency and its associated impacts, thereby providing new insights for agricultural water management. However, quantitative studies of regional CWF require extensive ground observations and are often constrained by scale effects, limited accuracy, and spatiotemporal discontinuities. To address these limitations, we developed a high-precision CWF quantification framework that assimilates remotely sensed leaf area index and downscaled soil moisture into the World Food Studies crop model using the Ensemble Kalman Filter. Application of the proposed framework in the Hetao Irrigation District successfully mapped the high-precision maize production water footprint, revealing a spatial pattern characterized by higher values in the eastern and western regions and lower values in the central area. The mean green water footprint, blue water footprint, and total water footprint of maize were 0.045 m<sup>3</sup>/kg, 0.660 m<sup>3</sup>/kg, and 0.705 m<sup>3</sup>/kg, respectively. Compared with estimates derived from remote sensing evapotranspiration products and the FAO Penman–Monteith method, the data assimilation framework improved the accuracy and spatial representativeness of maize water footprint estimation. Overall, the proposed framework provides a reliable tool for quantifying agricultural water-use efficiency and lays a data and methodological foundation for refined water resources management.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"394 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146160937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying and Regionalizing Land Use Impacts on Catchment Response Times With High-Frequency Observations 利用高频观测量化和区划土地利用对流域响应时间的影响
IF 5.4 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2026-02-11 DOI: 10.1029/2025wr040922
Anthony C. Ross, Boris Ochoa-Tocachi, Vivien Bonnesoeur, Braulio Lahuatte, Paola Fuentes, Javier Antiporta, Mauricio F. Villazon, Wouter Buytaert
Land use and land cover change (LUCC) can affect the hydrological response time of rivers. However, it is difficult to generate robust and quantitative evidence of this impact at the catchment scale. This lack of evidence also affects the development of rainfall-runoff models to make ex-ante predictions. Here, we analyze high-frequency observational data from a network of pairwise catchments in the tropical Andes and find a statistically significant impact of intensive land use on the hydrological response time, which can be used for regionalization. First, we isolated individual rainfall response events from 5-min precipitation and discharge time series of 16 catchments (8 pairs). We then fitted unit hydrographs on these events to estimate the catchment response times. These response times were subsequently regionalized by, first, applying a forward stepwise regression to select statistically significant catchment characteristics including land use and land cover, then, fitting a linear mixed-effects model with the selected characteristics to account for within-site variability between pairs. We find that catchments with intensive land use have a significantly quicker response than their natural counterparts. Differences were often sub-hourly, highlighting the value of high-frequency monitoring. Forward stepwise regression identified only catchment area and intensive land use percentage (LUP) as statistically significant predictors. Model coefficients show that, even when considering other catchment characteristics, increasing intensive LUP decreases response times. This study provides solid evidence and a robust methodology to quantify the impacts of LUCC on catchment hydrology.
土地利用与土地覆盖变化(LUCC)对河流水文响应时间具有重要影响。然而,很难在流域尺度上产生这种影响的有力和定量证据。这种证据的缺乏也影响了降雨径流模型的发展,以进行事前预测。在此,我们分析了热带安第斯山脉成对集水区网络的高频观测数据,发现集约土地利用对水文响应时间的统计显著影响,可用于区划。首先,我们从16个流域(8对)的5分钟降水和流量时间序列中分离出单个降雨响应事件。然后,我们在这些事件上拟合了单位水文图,以估计集水区的响应时间。这些响应时间随后通过以下方法进行区域化:首先,应用前向逐步回归选择统计上显著的流域特征,包括土地利用和土地覆盖,然后,用所选特征拟合线性混合效应模型,以解释对之间的场地内变异性。我们发现集约利用土地的集水区比自然集水区的响应要快得多。差异往往低于每小时,突出了高频监测的价值。正向逐步回归发现,只有集水区面积和集约土地利用百分比(LUP)是具有统计学意义的预测因子。模型系数表明,即使考虑到其他流域特征,增加集约LUP也会减少响应时间。本研究为量化土地利用/土地覆盖变化对流域水文的影响提供了可靠的证据和可靠的方法。
{"title":"Quantifying and Regionalizing Land Use Impacts on Catchment Response Times With High-Frequency Observations","authors":"Anthony C. Ross, Boris Ochoa-Tocachi, Vivien Bonnesoeur, Braulio Lahuatte, Paola Fuentes, Javier Antiporta, Mauricio F. Villazon, Wouter Buytaert","doi":"10.1029/2025wr040922","DOIUrl":"https://doi.org/10.1029/2025wr040922","url":null,"abstract":"Land use and land cover change (LUCC) can affect the hydrological response time of rivers. However, it is difficult to generate robust and quantitative evidence of this impact at the catchment scale. This lack of evidence also affects the development of rainfall-runoff models to make ex-ante predictions. Here, we analyze high-frequency observational data from a network of pairwise catchments in the tropical Andes and find a statistically significant impact of intensive land use on the hydrological response time, which can be used for regionalization. First, we isolated individual rainfall response events from 5-min precipitation and discharge time series of 16 catchments (8 pairs). We then fitted unit hydrographs on these events to estimate the catchment response times. These response times were subsequently regionalized by, first, applying a forward stepwise regression to select statistically significant catchment characteristics including land use and land cover, then, fitting a linear mixed-effects model with the selected characteristics to account for within-site variability between pairs. We find that catchments with intensive land use have a significantly quicker response than their natural counterparts. Differences were often sub-hourly, highlighting the value of high-frequency monitoring. Forward stepwise regression identified only catchment area and intensive land use percentage (LUP) as statistically significant predictors. Model coefficients show that, even when considering other catchment characteristics, increasing intensive LUP decreases response times. This study provides solid evidence and a robust methodology to quantify the impacts of LUCC on catchment hydrology.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"100 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2026-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146161074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial analysis of Beltanelliformis (Nemiana) in Baltica 波罗的海地区Beltanelliformis (Nemiana)的空间分析
IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2026-02-10 DOI: 10.1016/j.precamres.2026.108032
Emily G. Mitchell , Ion Francovschi , Heda Agić , Andrey Bekker
Discoidal fossils are some of the most abundant and widespread Ediacaran taxa found in many different environments throughout the late Ediacaran (580–539 Ma). They have a wide range of suggested affinities including microbial colonies, medusae, and the holdfasts of frondose taxa, including putative algal/bacterial discoidal taxa, such as Beltanelliformis and Nemiana, which are often found in large abundance in monospecific clusters. From their spatial patterns, we can infer the underlying biological and ecological processes governing their community ecology. Here, we analyzed four new Ediacaran communities from the ca. 567–539 Ma Moldova-Podillya Basin, with Vălcineț Area A and B, in the nearshore to shallow-marine environments, Cosăuți in the lower-energy marine environment, and Egoreni in the shallow-marine conditions (2352 specimens over 11.46 m2), as well as previously described two communities (196 specimens over 1.80 m2) from Kolesnikov (2022) data and 121 specimens over 0.46 m2 from Leonov (2007) data from the Central Urals and the White Sea areas, respectively. These communities exhibited different community dynamics, with strong cluster orientation and dispersal processes in the Vălcineț and South Urals communities, in contrast to the strong association with habitat patchiness for the Cosăuți, Egoreni and White Sea area communities. Our results suggest two alternative drivers for Beltanelliformis communities, those controlled by dispersal in currents and those in a weaker flow by substrate patchiness. The White Sea assemblage Ediacaran biota show variation in environmental and dispersal dynamics and thus contrast with Avalonian assemblage Ediacaran biota, which show consistent drivers across large spatial and temporal scales.
盘状化石是埃迪卡拉纪晚期(580-539 Ma)在许多不同环境中发现的最丰富和最广泛的埃迪卡拉纪分类群之一。它们具有广泛的亲和性,包括微生物菌落,水母和frondose分类群的固定物,包括假定的藻类/细菌盘状分类群,如Beltanelliformis和Nemiana,它们通常在单特异性集群中大量发现。从它们的空间格局中,我们可以推断出控制其群落生态的潜在生物和生态过程。在这里,我们分析了来自大约567-539 Ma Moldova-Podillya盆地的4个新的埃迪卡拉纪群落,其中vlineii区A和B区位于近岸至浅海环境,Cosăuți位于低能海洋环境,egreni位于浅海条件(2352个标本,超过11.46 m2)。以及先前描述的两个群落(来自Kolesnikov(2022)数据的196个标本超过1.80 m2)和来自Leonov(2007)数据的121个标本超过0.46 m2,分别来自乌拉尔中部和白海地区。这些群落表现出不同的群落动态,vlineine和South Urals群落具有较强的集群取向和分散过程,而Cosăuți、Egoreni和White Sea地区群落则与生境斑块性有较强的关联。我们的研究结果表明,Beltanelliformis群落有两种驱动因素,一种是由水流扩散控制的,另一种是由基质斑块控制的。白海组合埃迪卡拉动物群表现出环境和扩散动态的变化,从而与阿瓦洛尼亚组合埃迪卡拉动物群形成对比,在大时空尺度上表现出一致的驱动因素。
{"title":"Spatial analysis of Beltanelliformis (Nemiana) in Baltica","authors":"Emily G. Mitchell ,&nbsp;Ion Francovschi ,&nbsp;Heda Agić ,&nbsp;Andrey Bekker","doi":"10.1016/j.precamres.2026.108032","DOIUrl":"10.1016/j.precamres.2026.108032","url":null,"abstract":"<div><div>Discoidal fossils are some of the most abundant and widespread Ediacaran taxa found in many different environments throughout the late Ediacaran (580–539 Ma). They have a wide range of suggested affinities including microbial colonies, medusae, and the holdfasts of frondose taxa, including putative algal/bacterial discoidal taxa, such as <em>Beltanelliformis</em> and <em>Nemiana</em>, which are often found in large abundance in monospecific clusters. From their spatial patterns, we can infer the underlying biological and ecological processes governing their community ecology. Here, we analyzed four new Ediacaran communities from the ca. 567–539 Ma Moldova-Podillya Basin, with Vălcineț Area A and B, in the nearshore to shallow-marine environments, Cosăuți in the lower-energy marine environment, and Egoreni in the shallow-marine conditions (2352 specimens over 11.46 m<sup>2</sup>), as well as previously described two communities (196 specimens over 1.80 m<sup>2</sup>) from <span><span>Kolesnikov (2022)</span></span> data and 121 specimens over 0.46 m<sup>2</sup> from <span><span>Leonov (2007)</span></span> data from the Central Urals and the White Sea areas, respectively. These communities exhibited different community dynamics, with strong cluster orientation and dispersal processes in the Vălcineț and South Urals communities, in contrast to the strong association with habitat patchiness for the Cosăuți, Egoreni and White Sea area communities. Our results suggest two alternative drivers for <em>Beltanelliformis</em> communities, those controlled by dispersal in currents and those in a weaker flow by substrate patchiness. The White Sea assemblage Ediacaran biota show variation in environmental and dispersal dynamics and thus contrast with Avalonian assemblage Ediacaran biota, which show consistent drivers across large spatial and temporal scales.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"436 ","pages":"Article 108032"},"PeriodicalIF":3.2,"publicationDate":"2026-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146147064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 Geobiology Appl. Clay Sci. Geochim. Cosmochim. Acta J. Hydrol. Org. Geochem. Carbon Balance Manage. Contrib. Mineral. Petrol. Int. J. Biometeorol. IZV-PHYS SOLID EART+ J. Atmos. Chem. Acta Oceanolog. Sin. Acta Geophys. ACTA GEOL POL ACTA PETROL SIN ACTA GEOL SIN-ENGL AAPG Bull. Acta Geochimica Adv. Atmos. Sci. Adv. Meteorol. Am. J. Phys. Anthropol. Am. J. Sci. Am. Mineral. Annu. Rev. Earth Planet. Sci. Appl. Geochem. Aquat. Geochem. Ann. Glaciol. Archaeol. Anthropol. Sci. ARCHAEOMETRY ARCT ANTARCT ALP RES Asia-Pac. J. Atmos. Sci. ATMOSPHERE-BASEL Atmos. Res. Aust. J. Earth Sci. Atmos. Chem. Phys. Atmos. Meas. Tech. Basin Res. Big Earth Data BIOGEOSCIENCES Boundary Layer Meteorol. BOREAS Braz. J. Geol. B GEOSCI CAN GEOTECH J Bull. Seismol. Soc. Am. Can. Mineral. Bull. Am. Meteorol. Soc. Can. J. Earth Sci. Carbonates Evaporites Chem. Geol. Clim. Dyn. Clay Miner. Clays Clay Miner. Clim. Past CLIM RES Comput. Geosci. DEEP-SEA RES PT II Dokl. Earth Sci. Earth Surf. Processes Landforms EARTH PLANETS SPACE Earth Sci. Res. J. Econ. Geol. Earth Planet. Sci. Lett. Earth Sci. Rev. Eng. Geol. ELEMENTS Eur. J. Mineral. Front. Earth Sci. Geo-Mar. Lett. GEOFLUIDS Geophys. J. Int. Geophys. Res. Lett. Geocarto Int. Geog. Anal. GEOL CARPATH GEOL Q Gems Gemol. Geol. Mag. GEOCHEM PERSPECT LET Geosynth. Int. Geofis. Int. Geostand. Geoanal. Res. GEOLOGY Geosci. J. Geochem. J. Geochem. Trans. Geosci. Front. Geol. Ore Deposits Global Biogeochem. Cycles Gondwana Res. Geochem. Int. Geol. J. Geophys. Prospect. Geosci. Model Dev. GEOL BELG GROUNDWATER Hydrogeol. J. Hydrol. Earth Syst. Sci. Hydrol. Processes Int. J. Climatol. Int. J. Earth Sci.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1