Pub Date : 2024-11-18DOI: 10.1038/s41561-024-01568-1
Gabriel M. Pontes, Laurie Menviel
The Atlantic Meridional Overturning Circulation is the main driver of northward heat transport in the Atlantic Ocean today, setting global climate patterns. Whether global warming has affected the strength of this overturning circulation over the past century is still debated: observational studies suggest that there has been persistent weakening since the mid-twentieth century, whereas climate models systematically simulate a stable circulation. Here, using Earth system and eddy-permitting coupled ocean–sea-ice models, we show that a freshening of the subarctic Atlantic Ocean and weakening of the overturning circulation increase the temperature and salinity of the South Atlantic on a decadal timescale through the propagation of Kelvin and Rossby waves. We also show that accounting for upper-end meltwater input in historical simulations significantly improves the data–model agreement on past changes in the Atlantic Meridional Overturning Circulation, yielding a slowdown of 0.46 sverdrups per decade since 1950. Including estimates of subarctic meltwater input for the coming century suggests that this circulation could be 33% weaker than its anthropogenically unperturbed state under 2 °C of global warming, which could be reached over the coming decade. Such a weakening of the overturning circulation would substantially affect the climate and ecosystems.
{"title":"Weakening of the Atlantic Meridional Overturning Circulation driven by subarctic freshening since the mid-twentieth century","authors":"Gabriel M. Pontes, Laurie Menviel","doi":"10.1038/s41561-024-01568-1","DOIUrl":"https://doi.org/10.1038/s41561-024-01568-1","url":null,"abstract":"<p>The Atlantic Meridional Overturning Circulation is the main driver of northward heat transport in the Atlantic Ocean today, setting global climate patterns. Whether global warming has affected the strength of this overturning circulation over the past century is still debated: observational studies suggest that there has been persistent weakening since the mid-twentieth century, whereas climate models systematically simulate a stable circulation. Here, using Earth system and eddy-permitting coupled ocean–sea-ice models, we show that a freshening of the subarctic Atlantic Ocean and weakening of the overturning circulation increase the temperature and salinity of the South Atlantic on a decadal timescale through the propagation of Kelvin and Rossby waves. We also show that accounting for upper-end meltwater input in historical simulations significantly improves the data–model agreement on past changes in the Atlantic Meridional Overturning Circulation, yielding a slowdown of 0.46 sverdrups per decade since 1950. Including estimates of subarctic meltwater input for the coming century suggests that this circulation could be 33% weaker than its anthropogenically unperturbed state under 2 °C of global warming, which could be reached over the coming decade. Such a weakening of the overturning circulation would substantially affect the climate and ecosystems.</p>","PeriodicalId":19053,"journal":{"name":"Nature Geoscience","volume":"248 1","pages":""},"PeriodicalIF":18.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhaohai He, Jiyao Xu, Lei Dai, Suping Duan, Hong Gao, Guojun Wang, Ilan Roth, Chi Wang
The solar cycle includes multi-scale variations in the near-Earth space regions including plasmasphere, inner radiation belt (IRB), ionosphere, mesosphere and lower thermosphere (MLT). We present a thorough analysis of the extent of solar cycle effect on those four regions by using mesospheric and thermospheric geopotential height and temperature from SABER on TIMED, ionospheric hmF2 from Chinese Meridian Project, high-energy protons in IRB and electron density in plasmasphere from Van Allen Probes within 2013–2018 intervals. By analyzing evolutions of these quantities, we find that entire IRB, ionosphere and MLT region shrink at solar minimum and stretch at solar maximum by ∼103, 50–102, and 1 km scales, respectively, while plasmapause shows an opposite trend. Fourier spectra of these quantities have been investigated by Lomb–Scargle periodogram. The mid-term periodic oscillations (13.5-day, 45-day, and 52-day) have been observed in MLT region, matching well with plasmapause locations and geomagnetic indices, which have not been observed in solar EUV radiation and IRB. This may indicate that those oscillations facilitate energy exchange and mass transportation between MLT region and plasmasphere due to magnetic storms and substorms. The oscillation periods of higher energy (102.6 MeV) in IRB have not been observed in MLT region except for annual variations. The impact of higher energy protons on MLT regions may not be significant, although they could penetrate deeper into MLT region. Our results reveal relationships between some quantities and solar cycle multi-scale modulation, which may provide assistance and monitors for mass transportation in the near-Earth space regions.
{"title":"Solar Activity Effects on the Near-Earth Space Regions During the Descending Phase of Solar Cycle 24","authors":"Zhaohai He, Jiyao Xu, Lei Dai, Suping Duan, Hong Gao, Guojun Wang, Ilan Roth, Chi Wang","doi":"10.1029/2024JA032860","DOIUrl":"https://doi.org/10.1029/2024JA032860","url":null,"abstract":"<p>The solar cycle includes multi-scale variations in the near-Earth space regions including plasmasphere, inner radiation belt (IRB), ionosphere, mesosphere and lower thermosphere (MLT). We present a thorough analysis of the extent of solar cycle effect on those four regions by using mesospheric and thermospheric geopotential height and temperature from SABER on TIMED, ionospheric hmF2 from Chinese Meridian Project, high-energy protons in IRB and electron density in plasmasphere from Van Allen Probes within 2013–2018 intervals. By analyzing evolutions of these quantities, we find that entire IRB, ionosphere and MLT region shrink at solar minimum and stretch at solar maximum by ∼10<sup>3</sup>, 50–10<sup>2</sup>, and 1 km scales, respectively, while plasmapause shows an opposite trend. Fourier spectra of these quantities have been investigated by Lomb–Scargle periodogram. The mid-term periodic oscillations (13.5-day, 45-day, and 52-day) have been observed in MLT region, matching well with plasmapause locations and geomagnetic indices, which have not been observed in solar EUV radiation and IRB. This may indicate that those oscillations facilitate energy exchange and mass transportation between MLT region and plasmasphere due to magnetic storms and substorms. The oscillation periods of higher energy (102.6 MeV) in IRB have not been observed in MLT region except for annual variations. The impact of higher energy protons on MLT regions may not be significant, although they could penetrate deeper into MLT region. Our results reveal relationships between some quantities and solar cycle multi-scale modulation, which may provide assistance and monitors for mass transportation in the near-Earth space regions.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}