首页 > 最新文献

IEEE Open Journal of the Solid-State Circuits Society最新文献

英文 中文
Low-Power Heterodyne Receiver Architectures: Review, Theory, and Examples 低功耗外差接收器架构:回顾、理论和示例
Pub Date : 2023-10-10 DOI: 10.1109/OJSSCS.2023.3322671
Aman Gupta;Trevor J. Odelberg;David D. Wentzloff
The growth of the Internet of Things (IoT) has led to a massive upsurge in low-power radio research. Specifically, low-power receivers (RX) have been developed that efficiently receive data and extend the battery life for energy-constrained IoT systems. This has led to innovations in energy-detector (ED) first RXs which can achieve much lower power than traditional mixer-based heterodyne architectures. However, at such low-power levels, the RX performance is extremely limited. Oftentimes, low-power RXs have severe performance limitations, including lower data rate, limited blocker rejection, lower sensitivity, lower tolerance to PVT, limited modulation compatibility, and increased size and cost of off-chip components to achieve passive gain. This greatly limits the application of such RXs in real-world applications and prevents many of the low-power circuit techniques from translating to commercial standards. In this work, we look to motivate research into low-power heterodyne RX architectures which can support higher order modulation and have improved RX specifications while retaining low power.
物联网(IoT)的发展带动了低功耗无线电研究的迅猛发展。特别是低功耗接收器(RX)的开发,可有效接收数据并延长能源受限的物联网系统的电池寿命。这导致了能量检测器(ED)第一接收器的创新,它可以实现比传统的基于混频器的外差架构更低的功耗。然而,在这种低功耗水平下,RX 性能极为有限。低功耗 RX 通常具有严重的性能限制,包括较低的数据速率、有限的阻塞抑制、较低的灵敏度、较低的 PVT 容限、有限的调制兼容性,以及为实现无源增益而增加的片外元件尺寸和成本。这极大地限制了此类 RX 在实际应用中的应用,并阻碍了许多低功耗电路技术转化为商业标准。在这项工作中,我们希望推动对低功耗外差式 RX 架构的研究,这种架构可以支持更高阶的调制,并在保持低功耗的同时改进 RX 规格。
{"title":"Low-Power Heterodyne Receiver Architectures: Review, Theory, and Examples","authors":"Aman Gupta;Trevor J. Odelberg;David D. Wentzloff","doi":"10.1109/OJSSCS.2023.3322671","DOIUrl":"10.1109/OJSSCS.2023.3322671","url":null,"abstract":"The growth of the Internet of Things (IoT) has led to a massive upsurge in low-power radio research. Specifically, low-power receivers (RX) have been developed that efficiently receive data and extend the battery life for energy-constrained IoT systems. This has led to innovations in energy-detector (ED) first RXs which can achieve much lower power than traditional mixer-based heterodyne architectures. However, at such low-power levels, the RX performance is extremely limited. Oftentimes, low-power RXs have severe performance limitations, including lower data rate, limited blocker rejection, lower sensitivity, lower tolerance to PVT, limited modulation compatibility, and increased size and cost of off-chip components to achieve passive gain. This greatly limits the application of such RXs in real-world applications and prevents many of the low-power circuit techniques from translating to commercial standards. In this work, we look to motivate research into low-power heterodyne RX architectures which can support higher order modulation and have improved RX specifications while retaining low power.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"225-238"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10275080","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136208330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low Power Circuit Interfaces for Strain Modulated Multiferroic Biomagnetic Sensors 应变调制多铁磁传感器的低功耗电路接口
Pub Date : 2023-10-05 DOI: 10.1109/OJSSCS.2023.3321008
Yujia Huo;Sydney Sofronici;Michael J. D’Agati;Roy H. Olsson
The recording and analysis of biomagnetic fields have widespread applications in medical research and diagnostics. Wearable magnetic field sensors offer a noncontact and portable method for sensing biopotentials. This article presents a readout circuit in 180-nm CMOS for strain-modulated multiferroic vector magnetic field sensors. By utilizing a demodulator-first architecture, the circuit bandwidth and dynamic range requirements are greatly reduced allowing for a low power consumption of 5.9 mW. The circuit bandwidth is from 76 mHz to 2.2 kHz, allowing for measurement across the range of interest for biomagnetic signals. Utilizing a modulation noise cancellation technique, the noise performance of the sensor system is significantly improved, and the sensor modulation amplitude can be increased, resulting in improved sensor sensitivity. Measurements for the sensor-readout system demonstrate a 144 pT/ $surd $ Hz magnetic noise floor at 1 kHz. The noise and power consumption are significantly lower than alternative magnetic sensor systems of similar volume.
生物磁场的记录和分析在医学研究和诊断中有着广泛的应用。可穿戴式磁场传感器为感应生物电位提供了一种非接触和便携的方法。本文介绍了一种用于应变调制多铁性矢量磁场传感器的180nm CMOS读出电路。通过利用解调器优先架构,电路带宽和动态范围要求大大降低,允许5.9 mW的低功耗。电路带宽从76 mHz到2.2 kHz,允许在生物磁信号感兴趣的范围内测量。利用调制降噪技术,传感器系统的噪声性能得到显著改善,传感器的调制幅度可以增加,从而提高传感器的灵敏度。对传感器读出系统的测量表明,在1khz时,磁底噪声为144pt / $ $ $ Hz。噪声和功耗明显低于同类体积的磁传感器系统。
{"title":"Low Power Circuit Interfaces for Strain Modulated Multiferroic Biomagnetic Sensors","authors":"Yujia Huo;Sydney Sofronici;Michael J. D’Agati;Roy H. Olsson","doi":"10.1109/OJSSCS.2023.3321008","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3321008","url":null,"abstract":"The recording and analysis of biomagnetic fields have widespread applications in medical research and diagnostics. Wearable magnetic field sensors offer a noncontact and portable method for sensing biopotentials. This article presents a readout circuit in 180-nm CMOS for strain-modulated multiferroic vector magnetic field sensors. By utilizing a demodulator-first architecture, the circuit bandwidth and dynamic range requirements are greatly reduced allowing for a low power consumption of 5.9 mW. The circuit bandwidth is from 76 mHz to 2.2 kHz, allowing for measurement across the range of interest for biomagnetic signals. Utilizing a modulation noise cancellation technique, the noise performance of the sensor system is significantly improved, and the sensor modulation amplitude can be increased, resulting in improved sensor sensitivity. Measurements for the sensor-readout system demonstrate a 144 pT/\u0000<inline-formula> <tex-math>$surd $ </tex-math></inline-formula>\u0000Hz magnetic noise floor at 1 kHz. The noise and power consumption are significantly lower than alternative magnetic sensor systems of similar volume.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"214-222"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10272978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Speed and High-Performance Continuous-Time ADCs for Automotive Receivers 用于汽车接收机的高速和高性能连续时间adc
Pub Date : 2023-09-29 DOI: 10.1109/OJSSCS.2023.3317817
Lucien J. Breems;Muhammed Bolatkale;Qilong Liu;Pierluigi Cenci
This article presents an overview of high-speed and high-performance continuous-time (CT) ADCs with a special attention to the application field of automotive receivers for broadcast radio and radar. An overview of the CT ADC architectural space is presented and the key design challenges related to high linearity and broadband signal conversion are described. Insights are given in the architectural and design choices to accomplish high-end performance points. A selection of case studies is presented that achieve state-of-the-art performance metrics with respect to linearity, bandwidth, and power efficiency.
本文介绍了高速和高性能连续时间(CT) adc的概况,并特别关注了广播无线电和雷达车载接收机的应用领域。介绍了CT ADC架构空间的概述,并描述了与高线性度和宽带信号转换相关的关键设计挑战。在架构和设计选择方面给出了见解,以实现高端性能点。选择的案例研究提出了实现最先进的性能指标方面的线性,带宽和功率效率。
{"title":"High-Speed and High-Performance Continuous-Time ADCs for Automotive Receivers","authors":"Lucien J. Breems;Muhammed Bolatkale;Qilong Liu;Pierluigi Cenci","doi":"10.1109/OJSSCS.2023.3317817","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3317817","url":null,"abstract":"This article presents an overview of high-speed and high-performance continuous-time (CT) ADCs with a special attention to the application field of automotive receivers for broadcast radio and radar. An overview of the CT ADC architectural space is presented and the key design challenges related to high linearity and broadband signal conversion are described. Insights are given in the architectural and design choices to accomplish high-end performance points. A selection of case studies is presented that achieve state-of-the-art performance metrics with respect to linearity, bandwidth, and power efficiency.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"174-184"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134794993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Trends and Challenges in Near-Field Wireless Power Transfer Systems 近场无线电力传输系统的最新趋势和挑战
Pub Date : 2023-09-11 DOI: 10.1109/OJSSCS.2023.3313575
Elisabetta Moisello;Alessandro Liotta;Piero Malcovati;Edoardo Bonizzoni
In recent years, wireless power transfer (WPT) has become a widespread method for charging and powering devices, including but not limited to consumer electronics, industrial applications, electric vehicles, medical devices, and sensor nodes. This article provides an overview of the available WPT technologies, focusing on the near-field case, and highlights the main architecture and circuit-level challenges encountered in the implementation of magnetic-based near-field WPT systems while reviewing the proposed solutions in the literature, in order to identify the main research interests as well as the trends for the future.
近年来,无线电力传输(WPT)已成为一种广泛的设备充电和供电方法,包括但不限于消费电子产品、工业应用、电动汽车、医疗设备和传感器节点。本文概述了可用的WPT技术,重点关注近场情况,并强调了在实施基于磁的近场WPT系统时遇到的主要架构和电路级挑战,同时回顾了文献中提出的解决方案,以确定主要的研究兴趣以及未来的趋势。
{"title":"Recent Trends and Challenges in Near-Field Wireless Power Transfer Systems","authors":"Elisabetta Moisello;Alessandro Liotta;Piero Malcovati;Edoardo Bonizzoni","doi":"10.1109/OJSSCS.2023.3313575","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3313575","url":null,"abstract":"In recent years, wireless power transfer (WPT) has become a widespread method for charging and powering devices, including but not limited to consumer electronics, industrial applications, electric vehicles, medical devices, and sensor nodes. This article provides an overview of the available WPT technologies, focusing on the near-field case, and highlights the main architecture and circuit-level challenges encountered in the implementation of magnetic-based near-field WPT systems while reviewing the proposed solutions in the literature, in order to identify the main research interests as well as the trends for the future.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"197-213"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10246316","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134795090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous-Time Pipelined ADC: A Breed of Continuous-Time ADCs for Wideband Data Conversion 连续时间流水线ADC:一种用于宽带数据转换的连续时间ADC
Pub Date : 2023-09-11 DOI: 10.1109/OJSSCS.2023.3313579
Hajime Shibata
The continuous-time (CT) pipelined analog-to-digital converter (ADC) is an emerging ADC architecture suitable for wide- bandwidth (BW) digitization in fully integrated receiver applications. It inherits the integration-friendly features of CT $Delta Sigma $ ADCs, such as inherent anti-aliasing, while achieving the wide- BW operation originating from discrete-time (DT) pipelined ADCs. In this review article, we introduce a gain-centric ADC model and apply the key criteria derived from the model to transform a DT pipelined ADC into a CT pipelined ADC. We then discuss the design considerations and essential building blocks of the CT pipelined ADC. Finally, we examine several implementations of this architecture with their highlights and challenges.
连续时间(CT)流水线模数转换器(ADC)是一种新兴的ADC架构,适用于全集成接收器应用中的宽带(BW)数字化。它继承了CT$DeltaSigma$ADC的集成友好特性,如固有的抗混叠,同时实现了源自离散时间(DT)流水线ADC的宽BW操作。在这篇综述文章中,我们介绍了一个以增益为中心的ADC模型,并应用从该模型导出的关键标准将DT流水线ADC转换为CT流水线ADC。然后,我们讨论了CT流水线ADC的设计注意事项和基本构建块。最后,我们考察了该体系结构的几个实现及其亮点和挑战。
{"title":"Continuous-Time Pipelined ADC: A Breed of Continuous-Time ADCs for Wideband Data Conversion","authors":"Hajime Shibata","doi":"10.1109/OJSSCS.2023.3313579","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3313579","url":null,"abstract":"The continuous-time (CT) pipelined analog-to-digital converter (ADC) is an emerging ADC architecture suitable for wide- bandwidth (BW) digitization in fully integrated receiver applications. It inherits the integration-friendly features of CT \u0000<inline-formula> <tex-math>$Delta Sigma $ </tex-math></inline-formula>\u0000 ADCs, such as inherent anti-aliasing, while achieving the wide- BW operation originating from discrete-time (DT) pipelined ADCs. In this review article, we introduce a gain-centric ADC model and apply the key criteria derived from the model to transform a DT pipelined ADC into a CT pipelined ADC. We then discuss the design considerations and essential building blocks of the CT pipelined ADC. Finally, we examine several implementations of this architecture with their highlights and challenges.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"162-173"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/10246305.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67861773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A WiFi and Bluetooth Low-Energy Backscatter Combo Chip With Beam Steering Capabilities 具有光束转向功能的 WiFi 和蓝牙低功耗反向散射组合芯片
Pub Date : 2023-09-11 DOI: 10.1109/OJSSCS.2023.3308530
Shih-Kai Kuo;Manideep Dunna;Dinesh Bharadia;Patrick P. Mercier
This article introduces a dual-mode backscatter integrated circuit that supports both WiFi and Bluetooth low-energy (BLE) transmissions. It enables a multiantenna WiFi mode with reconfigurable beam steering of single-sideband (SSB) quadrature phase shift-keying (QPSK) signals, while also facilitating omnidirectional SSB BLE-to-BLE backscatter communication. To achieve beam steering, two techniques are proposed: 1) a transmission-line-less fully reflective SP4T backscatter switch is employed to minimize power loss and maximize the communication range and 2) a multiantenna array is constructed using the aforementioned SP4T switches together with a baseband phase-shifting technique to reradiate the incident WiFi signal with a controllable angle of direction. The chip implementation is based on a 65-nm CMOS process and operates at a power consumption of $5.5 mu text{W}$ in standby mode. In backscattering mode, it consumes $39 mu text{W}$ for the single-antenna approach and $88 mu text{W}$ for the multiantenna approach. The proposed design achieves a worst-case access point (AP)-to-AP range of 35 and 56 m for the single-antenna and multiantenna approaches, respectively.
本文介绍了一种同时支持 WiFi 和低能耗蓝牙 (BLE) 传输的双模反向散射集成电路。它实现了多天线 WiFi 模式,可对单边带(SSB)正交相移键控(QPSK)信号进行可重新配置的波束转向,同时还促进了全向 SSB BLE 到 BLE 的反向散射通信。为实现波束转向,提出了两种技术:1)采用无传输线的全反射 SP4T 后向散射开关,以最大限度地减少功率损耗并最大限度地扩大通信范围;2)使用上述 SP4T 开关和基带移相技术构建多天线阵列,以可控的方向角重新散射入射 WiFi 信号。芯片基于 65 纳米 CMOS 工艺实现,待机模式下的功耗为 5.5 mu text{W}$。在反向散射模式下,单天线方法的功耗为 39 mu text{W}$,多天线方法的功耗为 88 mu text{W}$。在最坏情况下,单天线和多天线方法的接入点(AP)到接入点(AP)的距离分别为 35 米和 56 米。
{"title":"A WiFi and Bluetooth Low-Energy Backscatter Combo Chip With Beam Steering Capabilities","authors":"Shih-Kai Kuo;Manideep Dunna;Dinesh Bharadia;Patrick P. Mercier","doi":"10.1109/OJSSCS.2023.3308530","DOIUrl":"10.1109/OJSSCS.2023.3308530","url":null,"abstract":"This article introduces a dual-mode backscatter integrated circuit that supports both WiFi and Bluetooth low-energy (BLE) transmissions. It enables a multiantenna WiFi mode with reconfigurable beam steering of single-sideband (SSB) quadrature phase shift-keying (QPSK) signals, while also facilitating omnidirectional SSB BLE-to-BLE backscatter communication. To achieve beam steering, two techniques are proposed: 1) a transmission-line-less fully reflective SP4T backscatter switch is employed to minimize power loss and maximize the communication range and 2) a multiantenna array is constructed using the aforementioned SP4T switches together with a baseband phase-shifting technique to reradiate the incident WiFi signal with a controllable angle of direction. The chip implementation is based on a 65-nm CMOS process and operates at a power consumption of \u0000<inline-formula> <tex-math>$5.5 mu text{W}$ </tex-math></inline-formula>\u0000 in standby mode. In backscattering mode, it consumes \u0000<inline-formula> <tex-math>$39 mu text{W}$ </tex-math></inline-formula>\u0000 for the single-antenna approach and \u0000<inline-formula> <tex-math>$88 mu text{W}$ </tex-math></inline-formula>\u0000 for the multiantenna approach. The proposed design achieves a worst-case access point (AP)-to-AP range of 35 and 56 m for the single-antenna and multiantenna approaches, respectively.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"239-248"},"PeriodicalIF":0.0,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10246802","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135361278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Techniques for Energy-Efficient Analog-to-Digital Converters 节能模数转换器的设计技术
Pub Date : 2023-09-08 DOI: 10.1109/OJSSCS.2023.3311418
Moonhyung Jang;Xiyuan Tang;Yong Lim;John G. Kauffman;Nan Sun;Maurits Ortmanns;Youngcheol Chae
The energy efficiency of analog-to-digital converters (ADCs) has improved steadily over the past 40 years, with the best reported ADC efficiency improving by nearly six orders of magnitude over the same period. The best figure-of-merit (FoM) is achieved with a limited class of ADC in terms of resolution and speed, but the coverage of the best FoM ADC has been expended. Many ADCs with the record FoM open up new applications and often incorporate multiple combinations of architectural and circuit innovations. It would be very interesting to follow a path of relentless optimization that could be useful to further expand the operating bandwidth of energy-efficient ADCs. To help along this path, this review article discusses the design techniques that focus on optimizing energy efficiency, involving successive approximation, pipelining, noise-shaping, and continuous-time operation.
在过去的40年里,模数转换器(ADC)的能效稳步提高,报告中最好的ADC效率在同一时期提高了近六个数量级。就分辨率和速度而言,最佳品质因数(FoM)是用一类有限的ADC实现的,但最佳FoM ADC的覆盖范围已经扩大。许多具有创纪录FoM的ADC开辟了新的应用程序,并且通常包含架构和电路创新的多种组合。遵循一条无情优化的道路将是非常有趣的,这可能有助于进一步扩大节能ADC的工作带宽。为了帮助实现这一目标,本文讨论了专注于优化能效的设计技术,包括逐次逼近、流水线、噪声整形和连续时间运算。
{"title":"Design Techniques for Energy-Efficient Analog-to-Digital Converters","authors":"Moonhyung Jang;Xiyuan Tang;Yong Lim;John G. Kauffman;Nan Sun;Maurits Ortmanns;Youngcheol Chae","doi":"10.1109/OJSSCS.2023.3311418","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3311418","url":null,"abstract":"The energy efficiency of analog-to-digital converters (ADCs) has improved steadily over the past 40 years, with the best reported ADC efficiency improving by nearly six orders of magnitude over the same period. The best figure-of-merit (FoM) is achieved with a limited class of ADC in terms of resolution and speed, but the coverage of the best FoM ADC has been expended. Many ADCs with the record FoM open up new applications and often incorporate multiple combinations of architectural and circuit innovations. It would be very interesting to follow a path of relentless optimization that could be useful to further expand the operating bandwidth of energy-efficient ADCs. To help along this path, this review article discusses the design techniques that focus on optimizing energy efficiency, involving successive approximation, pipelining, noise-shaping, and continuous-time operation.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"145-161"},"PeriodicalIF":0.0,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/10246164.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67861774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A 3.8-μW 10-Keyword Noise-Robust Keyword Spotting Processor Using Symmetric Compressed Ternary-Weight Neural Networks 基于对称压缩三权神经网络的3.8 μ w 10关键字噪声鲁棒关键字识别处理器
Pub Date : 2023-09-06 DOI: 10.1109/OJSSCS.2023.3312354
Bo Liu;Na Xie;Renyuan Zhang;Haichuan Yang;Ziyu Wang;Deliang Fan;Zhen Wang;Weiqiang Liu;Hao Cai
A ternary-weight neural network (TWN) inspired keyword spotting (KWS) processor is proposed to support complicated and variable application scenarios. To achieve high-precision recognition of ten keywords under 5 dB~Clean wide range of background noises, a convolution neural network consists of four convolution layers and four fully connected layers, with modified sparsity-controllable truncated Gaussian approximation-based ternary-weight training is used. End-to-end optimization composed of three techniques is utilized: 1) the stage-by-stage bit-width selection algorithm to optimize the hardware overhead of FFT; 2) the lossy compressed TWN with symmetric kernel training (SKT) and dedicated internal data reuse computation flow; and 3) the error intercompensation approximate addition tree to reduce the computation overhead with marginal accuracy loss. Fabricated in an industrial 22-nm CMOS process, the processor realizes up to ten keywords in real-time recognition under 11 background noise types, with the accuracy of 90.6%@clean and 85.4%@5 dB. It consumes an average power of $3.8 ~mu text{W}$ at 250 kHz and the normalized energy efficiency is $2.79times $ higher than state of the art.
针对复杂多变的应用场景,提出了一种基于三权神经网络(TWN)的关键词识别处理器。为了实现5 dB~Clean大范围背景噪声下10个关键词的高精度识别,采用改进稀疏可控截断高斯近似的三权训练方法,构建了由4个卷积层和4个全连通层组成的卷积神经网络。采用三种技术组成的端到端优化:1)采用逐级位宽选择算法优化FFT的硬件开销;2)具有对称核训练(SKT)和专用内部数据重用计算流的有损压缩TWN;3)误差间补偿近似加法树,以减少计算量和边际精度损失。该处理器采用工业22nm CMOS工艺制造,可在11种背景噪声下实现多达10个关键词的实时识别,准确率为90.6%@clean, 85.4%@5 dB。它在250 kHz时的平均功耗为3.8 ~mu text{W}$,标准化的能源效率比目前的技术水平高2.79 $。
{"title":"A 3.8-μW 10-Keyword Noise-Robust Keyword Spotting Processor Using Symmetric Compressed Ternary-Weight Neural Networks","authors":"Bo Liu;Na Xie;Renyuan Zhang;Haichuan Yang;Ziyu Wang;Deliang Fan;Zhen Wang;Weiqiang Liu;Hao Cai","doi":"10.1109/OJSSCS.2023.3312354","DOIUrl":"10.1109/OJSSCS.2023.3312354","url":null,"abstract":"A ternary-weight neural network (TWN) inspired keyword spotting (KWS) processor is proposed to support complicated and variable application scenarios. To achieve high-precision recognition of ten keywords under 5 dB~Clean wide range of background noises, a convolution neural network consists of four convolution layers and four fully connected layers, with modified sparsity-controllable truncated Gaussian approximation-based ternary-weight training is used. End-to-end optimization composed of three techniques is utilized: 1) the stage-by-stage bit-width selection algorithm to optimize the hardware overhead of FFT; 2) the lossy compressed TWN with symmetric kernel training (SKT) and dedicated internal data reuse computation flow; and 3) the error intercompensation approximate addition tree to reduce the computation overhead with marginal accuracy loss. Fabricated in an industrial 22-nm CMOS process, the processor realizes up to ten keywords in real-time recognition under 11 background noise types, with the accuracy of 90.6%@clean and 85.4%@5 dB. It consumes an average power of \u0000<inline-formula> <tex-math>$3.8 ~mu text{W}$ </tex-math></inline-formula>\u0000 at 250 kHz and the normalized energy efficiency is \u0000<inline-formula> <tex-math>$2.79times $ </tex-math></inline-formula>\u0000 higher than state of the art.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"185-196"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10242041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79901424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Digital Power Amplifier With Built-In AM–PM Compensation and a Single-Transformer Output Network 具有内置AM–PM补偿和单变压器输出网络的数字功率放大器
Pub Date : 2023-08-11 DOI: 10.1109/OJSSCS.2023.3304599
Jeongseok Lee;Doohwan Jung;David Munzer;Hua Wang
This article presents a digital power amplifier (DPA) with a built-in AM–PM compensation technique and a compact single-transformer footprint. The AM–PM distortion behavior of the current-mode/voltage-mode power amplifiers (PAs) is detailed and an AM–PM compensation technique for both modes is introduced. The proposed design utilizes one current-mode DPA as the main path PA and a class-G PA voltage-mode digital PA as the auxiliary path PA, combined through a single-transformer footprint. It provides enhanced linearity through built-in adaptive biasing and hybrid current-/voltage-mode Doherty-based power combining. As a proof of concept, a 1.2–2.4-GHz wideband DPA is implemented in the Globalfoundries 45-nm CMOS SOI process. The measurements show a 37.6% peak drain efficiency (DE) at 1.4 GHz, and 21.8-dBm saturated output power (Psat) and $1.2times /1.4times $ power back-off (PBO) efficiency enhancement, compared to the ideal class-B at 3 dB/6 dB PBO at 1.2 GHz. This proposed digital PA supports 20-MSym/s 64-QAM modulation at 14.8-dBm average output power and 22.8% average PA DE while maintaining error vector magnitude (EVM) lower than −23 dB without any phase predistortion. To the best of our knowledge, this is the first demonstration of hybrid current–voltage-mode Doherty power combining on a single-footprint transformer over a broad bandwidth (BW).
本文介绍了一种具有内置AM–PM补偿技术和紧凑的单变压器占地面积的数字功率放大器(DPA)。详细介绍了电流模式/电压模式功率放大器(PA)的AM–PM失真行为,并介绍了两种模式的AM–PM补偿技术。所提出的设计利用一个电流模式DPA作为主路径PA和一个G类PA电压模式数字PA作为辅助路径PA,通过单个变压器占地面积进行组合。它通过内置自适应偏置和基于多尔蒂的混合电流/电压模式功率组合提供增强的线性。作为概念验证,Globalfoundries 45 nm CMOS SOI工艺实现了1.2–2.4-GHz宽带DPA。测量结果显示,与1.2 GHz时3dB/6 dB的理想B类PBO相比,1.4 GHz时的峰值漏极效率(DE)为37.6%,饱和输出功率(Psat)为21.8 dBm,功率回退(PBO)为$1.2times/1.4times$。这种提出的数字PA在14.8 dBm的平均输出功率和22.8%的平均PA-DE下支持20 MSym/s 64-QAM调制,同时在没有任何相位预失真的情况下保持误差矢量幅度(EVM)低于-23 dB。据我们所知,这是首次在宽带(BW)上在单个占地面积变压器上进行混合电流-电压模式多尔蒂功率组合的演示。
{"title":"A Digital Power Amplifier With Built-In AM–PM Compensation and a Single-Transformer Output Network","authors":"Jeongseok Lee;Doohwan Jung;David Munzer;Hua Wang","doi":"10.1109/OJSSCS.2023.3304599","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3304599","url":null,"abstract":"This article presents a digital power amplifier (DPA) with a built-in AM–PM compensation technique and a compact single-transformer footprint. The AM–PM distortion behavior of the current-mode/voltage-mode power amplifiers (PAs) is detailed and an AM–PM compensation technique for both modes is introduced. The proposed design utilizes one current-mode DPA as the main path PA and a class-G PA voltage-mode digital PA as the auxiliary path PA, combined through a single-transformer footprint. It provides enhanced linearity through built-in adaptive biasing and hybrid current-/voltage-mode Doherty-based power combining. As a proof of concept, a 1.2–2.4-GHz wideband DPA is implemented in the Globalfoundries 45-nm CMOS SOI process. The measurements show a 37.6% peak drain efficiency (DE) at 1.4 GHz, and 21.8-dBm saturated output power (Psat) and \u0000<inline-formula> <tex-math>$1.2times /1.4times $ </tex-math></inline-formula>\u0000 power back-off (PBO) efficiency enhancement, compared to the ideal class-B at 3 dB/6 dB PBO at 1.2 GHz. This proposed digital PA supports 20-MSym/s 64-QAM modulation at 14.8-dBm average output power and 22.8% average PA DE while maintaining error vector magnitude (EVM) lower than −23 dB without any phase predistortion. To the best of our knowledge, this is the first demonstration of hybrid current–voltage-mode Doherty power combining on a single-footprint transformer over a broad bandwidth (BW).","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"134-144"},"PeriodicalIF":0.0,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/10214532.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67861775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Open Journal of Solid-State Circuits Society Special Section on Biomedical Electronics IEEE固态电路学会开放期刊生物医学电子学专刊
Pub Date : 2023-07-06 DOI: 10.1109/OJSSCS.2023.3281904
Jerald Yoo
Recent advances in biomedical electronics have opened the doors to pervasive/wearable technologies as well as bioinspired systems. Traditional disease treatment is shifting toward preemptive, personalized healthcare. For these biomedical electronics to work seamlessly, careful design of integrated circuits for sensing, signal processing, and powering is crucial. However, biomedical applications often are under unique and harsh environments, such as under extremely stringent power budgets and fluctuating supply voltages; on top of this, such applications require hermetic sealing with robust communications. Moreover, we also need to consider various aspects that other applications do not normally consider. As an example, the human body absorbs GHz range electromagnetic signals significantly, making typical RF communication and powering technologies such as Bluetooth or wireless power transfer (WPT) in GHz not an ideal choice in/around body area [1]. Also, with the rise of artificial intelligence and machine learning, personalized healthcare is becoming more popular, but for some applications, “personalized” means that training sets may get scarce, posing issues to achieving high sensitivity and specificity at once. This special Section will present the latest developments in integrated circuits in biomedical electronics to overcome the aforementioned issues: powering, sensing, and processing.
生物医学电子技术的最新进展为普及/可穿戴技术以及仿生系统打开了大门。传统的疾病治疗正在向先发制人、个性化的医疗保健转变。为了使这些生物医学电子设备无缝工作,仔细设计用于传感、信号处理和供电的集成电路至关重要。然而,生物医学应用通常处于独特和恶劣的环境下,例如在极其严格的功率预算和波动的电源电压下;除此之外,此类应用需要具有坚固通信的气密密封。此外,我们还需要考虑其他应用程序通常不会考虑的各个方面。例如,人体会显著吸收GHz范围的电磁信号,这使得典型的射频通信和供电技术,如蓝牙或无线功率传输(WPT)在GHz范围内并不是身体区域/周围的理想选择[1]。此外,随着人工智能和机器学习的兴起,个性化医疗保健越来越受欢迎,但对于一些应用程序来说,“个性化”意味着训练集可能会变得稀缺,这给同时实现高灵敏度和特异性带来了问题。本节将介绍生物医学电子中集成电路的最新发展,以克服上述问题:电源、传感和处理。
{"title":"IEEE Open Journal of Solid-State Circuits Society Special Section on Biomedical Electronics","authors":"Jerald Yoo","doi":"10.1109/OJSSCS.2023.3281904","DOIUrl":"https://doi.org/10.1109/OJSSCS.2023.3281904","url":null,"abstract":"Recent advances in biomedical electronics have opened the doors to pervasive/wearable technologies as well as bioinspired systems. Traditional disease treatment is shifting toward preemptive, personalized healthcare. For these biomedical electronics to work seamlessly, careful design of integrated circuits for sensing, signal processing, and powering is crucial. However, biomedical applications often are under unique and harsh environments, such as under extremely stringent power budgets and fluctuating supply voltages; on top of this, such applications require hermetic sealing with robust communications. Moreover, we also need to consider various aspects that other applications do not normally consider. As an example, the human body absorbs GHz range electromagnetic signals significantly, making typical RF communication and powering technologies such as Bluetooth or wireless power transfer (WPT) in GHz not an ideal choice in/around body area [1]. Also, with the rise of artificial intelligence and machine learning, personalized healthcare is becoming more popular, but for some applications, “personalized” means that training sets may get scarce, posing issues to achieving high sensitivity and specificity at once. This special Section will present the latest developments in integrated circuits in biomedical electronics to overcome the aforementioned issues: powering, sensing, and processing.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"3 ","pages":"63-64"},"PeriodicalIF":0.0,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/10019316/10174830.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67861769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Open Journal of the Solid-State Circuits Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1