首页 > 最新文献

2018 IEEE International Electron Devices Meeting (IEDM)最新文献

英文 中文
Trap Reduction and Performances Improvements Study after High Pressure Anneal Process on Single Crystal Channel 3D NAND Devices
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614667
A. Subirats, A. Arreghini, R. Delhougne, E. Rosseel, A. Hikavyy, L. Breuil, S. V. Palayam, G. Van den bosch, D. Linten, A. Furnémont
We study the impact of HPAP on SCC 3D NAND devices. We show that the process can reduce trap density but is leaving trap impact on devices VT unaffected. It is also shown, both by simulations and measurements, that further scaling could lead to the increase of single trap impact. Finally, we measure that despite largely improving devices electrical parameter, HPAP has no effect on memory performances (Program/Erase) or could slightly degrade it (Retention).
我们研究了HPAP对SCC 3D NAND器件的影响。我们表明该工艺可以降低陷阱密度,但陷阱对器件VT的影响不受影响。模拟和测量结果也表明,进一步的缩放可能导致单阱影响的增加。最后,我们测量到,尽管在很大程度上改善了设备的电气参数,但HPAP对内存性能(程序/擦除)没有影响,或者可能会略微降低内存性能(保留)。
{"title":"Trap Reduction and Performances Improvements Study after High Pressure Anneal Process on Single Crystal Channel 3D NAND Devices","authors":"A. Subirats, A. Arreghini, R. Delhougne, E. Rosseel, A. Hikavyy, L. Breuil, S. V. Palayam, G. Van den bosch, D. Linten, A. Furnémont","doi":"10.1109/IEDM.2018.8614667","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614667","url":null,"abstract":"We study the impact of HPAP on SCC 3D NAND devices. We show that the process can reduce trap density but is leaving trap impact on devices VT unaffected. It is also shown, both by simulations and measurements, that further scaling could lead to the increase of single trap impact. Finally, we measure that despite largely improving devices electrical parameter, HPAP has no effect on memory performances (Program/Erase) or could slightly degrade it (Retention).","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124293885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
System Performance: From Enterprise to AI 系统性能:从企业到人工智能
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614582
Arvind Kumar, Leland Chang, G. E. Tellez, H. ClevengerLeighAnne, J. L. Burns
System performance has shown many decades of continuous improvement. After first reviewing historical trends and the current outlook, in this paper we discuss the challenges and opportunities in future computing systems due to the disruptive confluence of stalled scaling and emerging AI workloads. Heterogeneous integration is highlighted as a key means to future systems performance growth.
系统性能显示了几十年来的不断改进。在首先回顾历史趋势和当前前景之后,我们在本文中讨论了由于停滞扩展和新兴人工智能工作负载的破坏性融合而导致的未来计算系统的挑战和机遇。异构集成被强调为未来系统性能增长的关键手段。
{"title":"System Performance: From Enterprise to AI","authors":"Arvind Kumar, Leland Chang, G. E. Tellez, H. ClevengerLeighAnne, J. L. Burns","doi":"10.1109/IEDM.2018.8614582","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614582","url":null,"abstract":"System performance has shown many decades of continuous improvement. After first reviewing historical trends and the current outlook, in this paper we discuss the challenges and opportunities in future computing systems due to the disruptive confluence of stalled scaling and emerging AI workloads. Heterogeneous integration is highlighted as a key means to future systems performance growth.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127108650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Interconnect metals beyond copper: reliability challenges and opportunities 铜以外的互连金属:可靠性挑战和机遇
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614695
K. Croes, C. Adelmann, C. Wilson, H. Zahedmanesh, O. Pedreira, C. Wu, A. Lesniewska, H. Oprins, S. Beyne, I. Ciofi, D. Kocaay, M. Stucchi, Z. Tokei
Reliability challenges of candidate metal systems to replace traditional Cu wiring in future interconnects are discussed. From a reliability perspective, a key opportunity is electromigration improvement: due to their high melting point and slower self-diffusion kinetics, higher current carrying capabilities are possible. Also, the higher cohesive energy and better resistance to oxidation of some metals potentially allows for barrierless integration, although adhesion properties must be carefully optimized. Besides avoiding small grain pinning and enabling high aspect ratio trench fill, the main processing challenges are identified to be a) avoiding seam voids, b) adhesion, c) CMP and d) disruptive metal etch. Main reliability challenges are related to higher mechanical stresses and higher joule heating which could lead to delamination during further processing and packaging and to enhanced electromigration in nearby metal lines.
讨论了在未来互连中替代传统铜布线的候选金属系统的可靠性挑战。从可靠性的角度来看,一个关键的机会是电迁移的改进:由于它们的高熔点和较慢的自扩散动力学,更高的载流能力是可能的。此外,由于某些金属具有更高的黏结能和更好的抗氧化性,因此有可能实现无障碍集成,但粘合性能必须仔细优化。除了避免小颗粒钉住和实现高纵横比沟槽填充外,确定的主要工艺挑战是a)避免接缝空隙,b)粘合,c) CMP和d)破坏性金属蚀刻。主要的可靠性挑战与更高的机械应力和更高的焦耳加热有关,这可能导致在进一步加工和包装过程中分层,并加剧附近金属线的电迁移。
{"title":"Interconnect metals beyond copper: reliability challenges and opportunities","authors":"K. Croes, C. Adelmann, C. Wilson, H. Zahedmanesh, O. Pedreira, C. Wu, A. Lesniewska, H. Oprins, S. Beyne, I. Ciofi, D. Kocaay, M. Stucchi, Z. Tokei","doi":"10.1109/IEDM.2018.8614695","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614695","url":null,"abstract":"Reliability challenges of candidate metal systems to replace traditional Cu wiring in future interconnects are discussed. From a reliability perspective, a key opportunity is electromigration improvement: due to their high melting point and slower self-diffusion kinetics, higher current carrying capabilities are possible. Also, the higher cohesive energy and better resistance to oxidation of some metals potentially allows for barrierless integration, although adhesion properties must be carefully optimized. Besides avoiding small grain pinning and enabling high aspect ratio trench fill, the main processing challenges are identified to be a) avoiding seam voids, b) adhesion, c) CMP and d) disruptive metal etch. Main reliability challenges are related to higher mechanical stresses and higher joule heating which could lead to delamination during further processing and packaging and to enhanced electromigration in nearby metal lines.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130040754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 41
Atomristors: Memory Effect in Atomically-thin Sheets and Record RF Switches 原子电阻器:原子薄薄片的记忆效应和记录射频开关
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614602
Ruijing Ge, Xiaohan Wu, Myungsoo Kim, P. Chen, Jianping Shi, Junho Choi, Xiaoqin Li, Yanfeng Zhang, M. Chiang, Jack C. Lee, D. Akinwande
Non-volatile resistive switching (NVRS) has been recently observed with synthesized monolayer molybdenum disulfide (MoS2) as the active layer and termed atomristors [1]. In this paper, we demonstrate the fastest switching speed (<15 ns) among all crystalline two-dimensional (2D) related NVRS devices to the best of our knowledge. For the first time, ab-initio simulation results of atomristors elucidate the mechanism revealing favorable substitution of specific metal ions into sulfur vacancies during switching. This insight combined with area-scaling experimental studies indicate a local conductive-bridge-like nature. The proposed mechanism is further supported by sulfur annealing recovery phenomenon. Moreover, exfoliated MoS2 monolayer is demonstrated to have memory effect for the first time, expanding the materials beyond synthesized films. State-of-the-art non-volatile RF switches based on MoS2 atomristors were prepared, featuring 0.25 dB insertion loss, 29 dB isolation (both at 67 GHz), and 70 THz cutoff frequency, a record performance compared to emerging RF switches. Our pioneering work suggests that memory effect maybe present in dozens or 100s of 2D monolayers similar to MoS2 paving the path for new scientific studies for understanding the rich physics, and engineering research towards diverse device applications.
近年来,以合成的单层二硫化钼(MoS2)为有源层的非易失性电阻开关(NVRS)被观察到,并被称为原子电阻[1]。在本文中,我们展示了在我们所知的所有晶体二维(2D)相关NVRS器件中最快的开关速度(<15 ns)。原子电阻器的从头算模拟结果首次阐明了开关过程中特定金属离子在硫空位上的有利取代机制。这一见解与区域尺度实验研究相结合,表明了局部导电桥的性质。硫退火恢复现象进一步支持了上述机理。此外,首次证明了剥离的二硫化钼单层具有记忆效应,将材料扩展到合成膜之外。基于MoS2原子电阻器制备了最先进的非易失性射频开关,具有0.25 dB插入损耗,29 dB隔离(均为67 GHz)和70 THz截止频率,与新兴射频开关相比具有创纪录的性能。我们的开创性工作表明,记忆效应可能存在于数十或100个类似于二硫化钼的二维单层中,为理解丰富的物理和面向不同器件应用的工程研究铺平了新的科学研究道路。
{"title":"Atomristors: Memory Effect in Atomically-thin Sheets and Record RF Switches","authors":"Ruijing Ge, Xiaohan Wu, Myungsoo Kim, P. Chen, Jianping Shi, Junho Choi, Xiaoqin Li, Yanfeng Zhang, M. Chiang, Jack C. Lee, D. Akinwande","doi":"10.1109/IEDM.2018.8614602","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614602","url":null,"abstract":"Non-volatile resistive switching (NVRS) has been recently observed with synthesized monolayer molybdenum disulfide (MoS2) as the active layer and termed atomristors [1]. In this paper, we demonstrate the fastest switching speed (<15 ns) among all crystalline two-dimensional (2D) related NVRS devices to the best of our knowledge. For the first time, ab-initio simulation results of atomristors elucidate the mechanism revealing favorable substitution of specific metal ions into sulfur vacancies during switching. This insight combined with area-scaling experimental studies indicate a local conductive-bridge-like nature. The proposed mechanism is further supported by sulfur annealing recovery phenomenon. Moreover, exfoliated MoS2 monolayer is demonstrated to have memory effect for the first time, expanding the materials beyond synthesized films. State-of-the-art non-volatile RF switches based on MoS2 atomristors were prepared, featuring 0.25 dB insertion loss, 29 dB isolation (both at 67 GHz), and 70 THz cutoff frequency, a record performance compared to emerging RF switches. Our pioneering work suggests that memory effect maybe present in dozens or 100s of 2D monolayers similar to MoS2 paving the path for new scientific studies for understanding the rich physics, and engineering research towards diverse device applications.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127809512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Towards scalable silicon quantum computing 走向可扩展的硅量子计算
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614675
M. Vinet, L. Hutin, B. Bertrand, S. Barraud, J. Hartmann, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P. Mortemousque, C. Spence, M. Urdampilleta, S. D. Franceschi, T. Meunier
We report the efforts and challenges dedicated towards building a scalable quantum computer based on Si spin qubits. We review the advantages of relying on devices fabricated in a thin film technology as their properties can be in situ tuned by the back gate voltage, which prefigures tuning capabilities in scalable qubits architectures.
我们报告了致力于构建基于硅自旋量子位的可扩展量子计算机的努力和挑战。我们回顾了依赖于薄膜技术制造的器件的优点,因为它们的特性可以通过后门电压进行原位调谐,这预示着可扩展量子比特架构的调谐能力。
{"title":"Towards scalable silicon quantum computing","authors":"M. Vinet, L. Hutin, B. Bertrand, S. Barraud, J. Hartmann, Y.-J. Kim, V. Mazzocchi, A. Amisse, H. Bohuslavskyi, L. Bourdet, A. Crippa, X. Jehl, R. Maurand, Y. Niquet, M. Sanquer, B. Venitucci, B. Jadot, E. Chanrion, P. Mortemousque, C. Spence, M. Urdampilleta, S. D. Franceschi, T. Meunier","doi":"10.1109/IEDM.2018.8614675","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614675","url":null,"abstract":"We report the efforts and challenges dedicated towards building a scalable quantum computer based on Si spin qubits. We review the advantages of relying on devices fabricated in a thin film technology as their properties can be in situ tuned by the back gate voltage, which prefigures tuning capabilities in scalable qubits architectures.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131417384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Hybrid Structure of Silicon Nanocrystals and 2D WSe2 for Broadband Optoelectronic Synaptic Devices 用于宽带光电突触器件的硅纳米晶体与二维WSe2的杂化结构
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614657
Zhenyi Ni, Yue Wang, Lixiang Liu, Shuangyi Zhao, Yang Xu, X. Pi, Deren Yang
As one of the most important technologies in the coming “More than Moore” era, neuromorphic computing critically depends on the development of synaptic devices. Here we take advantage of the synergy of the strong broadband optical absorption of boron (B)-doped silicon nanocrystals (Si NCs) and the efficient charge transport of two-dimensional (2D) WSe2 to make synaptic devices based on the hybrid structure of Si NCs and 2D WSe2. The Si-NC/WSe2 synaptic devices can be optically stimulated in a broad spectral region from the ultraviolet (UV) to near-infrared (NIR), exhibiting important synaptic functionalities. The energy consumption of the Si-NC/WSe2 synaptic devices may be as low as ∼ 75 fJ. This work has important implication for the development of synaptic devices by exploiting the abundant library of semiconductor NCs and 2D materials.
作为即将到来的“超越摩尔”时代最重要的技术之一,神经形态计算在很大程度上取决于突触装置的发展。本文利用掺硼硅纳米晶体(Si NCs)的强宽带光吸收和二维WSe2的高效电荷输运的协同作用,制作了基于Si NCs和二维WSe2杂化结构的突触器件。Si-NC/WSe2突触器件可以在从紫外(UV)到近红外(NIR)的广谱区域内进行光刺激,显示出重要的突触功能。Si-NC/WSe2突触器件的能量消耗可能低至~ 75 fJ。这项工作对利用丰富的半导体nc和二维材料库开发突触器件具有重要意义。
{"title":"Hybrid Structure of Silicon Nanocrystals and 2D WSe2 for Broadband Optoelectronic Synaptic Devices","authors":"Zhenyi Ni, Yue Wang, Lixiang Liu, Shuangyi Zhao, Yang Xu, X. Pi, Deren Yang","doi":"10.1109/IEDM.2018.8614657","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614657","url":null,"abstract":"As one of the most important technologies in the coming “More than Moore” era, neuromorphic computing critically depends on the development of synaptic devices. Here we take advantage of the synergy of the strong broadband optical absorption of boron (B)-doped silicon nanocrystals (Si NCs) and the efficient charge transport of two-dimensional (2D) WSe2 to make synaptic devices based on the hybrid structure of Si NCs and 2D WSe2. The Si-NC/WSe2 synaptic devices can be optically stimulated in a broad spectral region from the ultraviolet (UV) to near-infrared (NIR), exhibiting important synaptic functionalities. The energy consumption of the Si-NC/WSe2 synaptic devices may be as low as ∼ 75 fJ. This work has important implication for the development of synaptic devices by exploiting the abundant library of semiconductor NCs and 2D materials.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122562786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
In-Memory Computing Primitive for Sensor Data Fusion in 28 nm HKMG FeFET Technology 28nm HKMG ffet技术中传感器数据融合的内存计算原语
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614527
K. Ni, B. Grisafe, W. Chakraborty, A. Saha, S. Dutta, M. Jerry, J. Smith, S. Gupta, S. Datta
In this work, we exploit the spatio-temporal switching dynamics of ferroelectric polarization to realize an energy-efficient, and massively-parallel in-memory computational primitive for at-node sensor data fusion and analytics based on an industrial 28nm HKMG FeFET technology [1]. We demonstrate: (i) the spatio-temporal dynamics of polarization switching in HfO2-based ferroelectrics under the stimuli of sub-coercive voltage pulses using experiments and phase-field modeling; (ii) an inherent rectifying conductance accumulation characteristic in FeFET with a large dynamic range of $G_{max}/G_{min} > 100$ in the case of 3.0V, 50ns gate pulses; (iii) transition to more abrupt accumulation characteristics due to single/few domain polarization switching in scaled FeFET (34nm LG); and (iv) successful detection of physiological anomalies from realworld multi-modal sensor data streams.
在这项工作中,我们利用铁电极化的时空切换动力学来实现基于工业28nm HKMG ffet技术的节点传感器数据融合和分析的节能、大规模并行内存计算原语[1]。通过实验和相场模拟,研究了亚矫顽力电压脉冲刺激下hfo2基铁电体极化开关的时空动力学;(ii)在3.0V, 50ns栅极脉冲的情况下,ffet固有的整流电导积累特性具有$G_{max}/G_{min} > 100$的大动态范围;(iii)由于缩放FeFET (34nm LG)的单/少畴极化开关,过渡到更突然的积累特性;(iv)从现实世界的多模态传感器数据流中成功检测生理异常。
{"title":"In-Memory Computing Primitive for Sensor Data Fusion in 28 nm HKMG FeFET Technology","authors":"K. Ni, B. Grisafe, W. Chakraborty, A. Saha, S. Dutta, M. Jerry, J. Smith, S. Gupta, S. Datta","doi":"10.1109/IEDM.2018.8614527","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614527","url":null,"abstract":"In this work, we exploit the spatio-temporal switching dynamics of ferroelectric polarization to realize an energy-efficient, and massively-parallel in-memory computational primitive for at-node sensor data fusion and analytics based on an industrial 28nm HKMG FeFET technology [1]. We demonstrate: (i) the spatio-temporal dynamics of polarization switching in HfO2-based ferroelectrics under the stimuli of sub-coercive voltage pulses using experiments and phase-field modeling; (ii) an inherent rectifying conductance accumulation characteristic in FeFET with a large dynamic range of $G_{max}/G_{min} > 100$ in the case of 3.0V, 50ns gate pulses; (iii) transition to more abrupt accumulation characteristics due to single/few domain polarization switching in scaled FeFET (34nm LG); and (iv) successful detection of physiological anomalies from realworld multi-modal sensor data streams.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122681726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
First Demonstration of 3D stacked Finfets at a 45nm fin pitch and 110nm gate pitch technology on 300mm wafers 首次在300mm晶圆上演示45纳米翅片间距和110纳米栅极间距的3D堆叠finfet技术
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614654
A. Vandooren, J. Franco, Z. Wu, B. Parvais, W. Li, L. Witters, A. Walke, L. Peng, V. Deshpande, N. Rassoul, G. Hellings, G. Jamieson, F. Inoue, K. Devriendt, L. Teugels, N. Heylen, E. Vecchio, T. Zheng, E. Rosseel, W. Vanherle, A. Hikavyy, G. Mannaert, B. Chan, R. Ritzenthaler, J. Mitard, L. Ragnarsson, N. Waldron, V. De Heyn, S. Demuynck, J. Boemmels, D. Mocuta, J. Ryckaert, N. Collaert
3 Dstacking using a sequential integration approach is demonstrated for finfet devices on 300mm wafers at a 45nm fin pitch and 110nm poly pitch technology. This demonstrates the compatibility of the 3D sequential approach for aggressive device density stacking at advanced nodes thanks to the tight alignment precision of the first processed top layer to the last processed bottom layer through the top silicon channel and bonding stack during 193nm immersion lithography. The top devices are junction-less devices fabricated at low temperature $(mathrm{T}leq 525^{circ}mathrm{C})$ in a top Si layer transferred by wafer-to-wafer bonding with a bonding dielectric stack down to 170nm. The top devices offer similar performance as the high temperature bulk finfet technology for LSTP applications. The use of TiN/TiA1/TiN/HfO2 gate stack provides the proper threshold voltage adjustment while the insertion of the LaSiOx dipole improves device performance and brings the BTI reliability within specification at low temperature.
采用顺序集成方法对300毫米晶圆上45纳米鳍间距和110纳米多间距技术的finet器件进行了Dstacking演示。由于在193nm浸没式光刻过程中,通过顶部硅通道和键合堆栈,第一个加工顶层到最后一个加工底层的紧密对准精度,这证明了3D顺序方法在先进节点上侵略性器件密度堆叠的兼容性。顶部器件是在低温$(mathrm{T}leq 525^{circ}mathrm{C})$下制造的无结器件,在顶部Si层中通过晶片到晶片键合传输,键合介电堆栈低至170nm。顶级器件为LSTP应用提供了与高温体finet技术相似的性能。TiN/TiA1/TiN/HfO2栅极堆栈的使用提供了适当的阈值电压调节,而LaSiOx偶极子的插入提高了器件性能,并使BTI在低温下的可靠性符合规格。
{"title":"First Demonstration of 3D stacked Finfets at a 45nm fin pitch and 110nm gate pitch technology on 300mm wafers","authors":"A. Vandooren, J. Franco, Z. Wu, B. Parvais, W. Li, L. Witters, A. Walke, L. Peng, V. Deshpande, N. Rassoul, G. Hellings, G. Jamieson, F. Inoue, K. Devriendt, L. Teugels, N. Heylen, E. Vecchio, T. Zheng, E. Rosseel, W. Vanherle, A. Hikavyy, G. Mannaert, B. Chan, R. Ritzenthaler, J. Mitard, L. Ragnarsson, N. Waldron, V. De Heyn, S. Demuynck, J. Boemmels, D. Mocuta, J. Ryckaert, N. Collaert","doi":"10.1109/IEDM.2018.8614654","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614654","url":null,"abstract":"3 Dstacking using a sequential integration approach is demonstrated for finfet devices on 300mm wafers at a 45nm fin pitch and 110nm poly pitch technology. This demonstrates the compatibility of the 3D sequential approach for aggressive device density stacking at advanced nodes thanks to the tight alignment precision of the first processed top layer to the last processed bottom layer through the top silicon channel and bonding stack during 193nm immersion lithography. The top devices are junction-less devices fabricated at low temperature $(mathrm{T}leq 525^{circ}mathrm{C})$ in a top Si layer transferred by wafer-to-wafer bonding with a bonding dielectric stack down to 170nm. The top devices offer similar performance as the high temperature bulk finfet technology for LSTP applications. The use of TiN/TiA1/TiN/HfO2 gate stack provides the proper threshold voltage adjustment while the insertion of the LaSiOx dipole improves device performance and brings the BTI reliability within specification at low temperature.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122961893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Advanced Arsenic Doped Epitaxial Growth for Source Drain Extension Formation in Scaled FinFET Devices 扩展FinFET器件源极漏极延伸形成的先进掺砷外延生长
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614543
S. Mochizuki, B. Colombeau, L. Yu, A. Dube, S. Choi, M. Stolfi, Z. Bi, F. Chang, R. Conti, P. Liu, K. Winstel, H. Jagannathan, H. Gossmann, N. Loubet, D. Canaperi, D. Guo, S. Sharma, S. Chu, J. Boland, Q. Jin, Z. Li, S. Lin, M. Cogorno, M. Chudzik, S. Natarajan, D. Mcherron, B. Haran
In this paper, we demonstrate a novel Source Drain Extension (SDE) approach to enable NMOS device scaling along with improved performance. For the first time, SDE formation with epitaxially grown As doped Si (Si:As) has been examined and compared to the current state-of-the-art SDE formation in FinFET at 10nm logic ground rules. It is found that a Si:As layer based SDE provides a clear improvement in the short channel effect and a significant device performance increase. It is also shown that a careful co-optimization of the Si:As layer and Source / Drain (S/D) lateral recess is required to achieve the optimum device gain. This paves the way for the ultimate nSDE formation for current and next generation CMOS devices.
在本文中,我们展示了一种新颖的源漏扩展(SDE)方法,该方法可以使NMOS器件扩展并提高性能。首次研究了外延生长As掺杂Si (Si:As)的SDE形成,并将其与当前最先进的10nm逻辑基本规则的FinFET SDE形成进行了比较。研究发现,基于Si:As层的SDE明显改善了短通道效应,并显著提高了器件性能。研究还表明,为了获得最佳的器件增益,需要仔细地共同优化Si:As层和源/漏(S/D)侧凹槽。这为当前和下一代CMOS器件的最终nSDE形成铺平了道路。
{"title":"Advanced Arsenic Doped Epitaxial Growth for Source Drain Extension Formation in Scaled FinFET Devices","authors":"S. Mochizuki, B. Colombeau, L. Yu, A. Dube, S. Choi, M. Stolfi, Z. Bi, F. Chang, R. Conti, P. Liu, K. Winstel, H. Jagannathan, H. Gossmann, N. Loubet, D. Canaperi, D. Guo, S. Sharma, S. Chu, J. Boland, Q. Jin, Z. Li, S. Lin, M. Cogorno, M. Chudzik, S. Natarajan, D. Mcherron, B. Haran","doi":"10.1109/IEDM.2018.8614543","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614543","url":null,"abstract":"In this paper, we demonstrate a novel Source Drain Extension (SDE) approach to enable NMOS device scaling along with improved performance. For the first time, SDE formation with epitaxially grown As doped Si (Si:As) has been examined and compared to the current state-of-the-art SDE formation in FinFET at 10nm logic ground rules. It is found that a Si:As layer based SDE provides a clear improvement in the short channel effect and a significant device performance increase. It is also shown that a careful co-optimization of the Si:As layer and Source / Drain (S/D) lateral recess is required to achieve the optimum device gain. This paves the way for the ultimate nSDE formation for current and next generation CMOS devices.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116315089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Progress in High and Ultrahigh Voltage Silicon Carbide Device Technology 高压和超高压碳化硅器件技术进展
Pub Date : 2018-12-01 DOI: 10.1109/IEDM.2018.8614600
Y. Yonezawa, K. Nakayama, R. Kosugi, S. Harada, K. Koseki, K. Sakamoto, T. Kimoto, H. Okumura
The current developments in silicon carbide (SiC) device technology in various voltage ranges are introduced. These developments correspond to, in particular, next-generation high to ultrahigh-voltage devices, SiC super-junction metal oxide semiconductor field effect transistors, SiC insulated gate bipolar transistors, and the fundamental bipolar degradation suppression technology. We expect that these next generation devices will trigger a paradigm shift in power electronics.
介绍了不同电压范围碳化硅器件技术的最新进展。这些发展特别对应于下一代高至超高压器件,SiC超结金属氧化物半导体场效应晶体管,SiC绝缘栅双极晶体管以及基本的双极退化抑制技术。我们期望这些下一代设备将引发电力电子领域的范式转变。
{"title":"Progress in High and Ultrahigh Voltage Silicon Carbide Device Technology","authors":"Y. Yonezawa, K. Nakayama, R. Kosugi, S. Harada, K. Koseki, K. Sakamoto, T. Kimoto, H. Okumura","doi":"10.1109/IEDM.2018.8614600","DOIUrl":"https://doi.org/10.1109/IEDM.2018.8614600","url":null,"abstract":"The current developments in silicon carbide (SiC) device technology in various voltage ranges are introduced. These developments correspond to, in particular, next-generation high to ultrahigh-voltage devices, SiC super-junction metal oxide semiconductor field effect transistors, SiC insulated gate bipolar transistors, and the fundamental bipolar degradation suppression technology. We expect that these next generation devices will trigger a paradigm shift in power electronics.","PeriodicalId":152963,"journal":{"name":"2018 IEEE International Electron Devices Meeting (IEDM)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116908896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
2018 IEEE International Electron Devices Meeting (IEDM)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1