Pub Date : 2024-05-18DOI: 10.1016/j.neurobiolaging.2024.05.008
Michele Cavallari , Alexandra Touroutoglou , Yuta Katsumi , Tamara G. Fong , Eva Schmitt , Thomas G. Travison , Mouhsin M. Shafi , Towia A. Libermann , Edward R. Marcantonio , David C. Alsop , Richard N. Jones , Sharon K. Inouye , Bradford C. Dickerson , for the SAGES study group
In older patients, delirium after surgery is associated with long-term cognitive decline (LTCD). The neural substrates of this association are unclear. Neurodegenerative changes associated with dementia are possible contributors. We investigated the relationship between brain atrophy rates in Alzheimer’s disease (AD) and cognitive aging signature regions from magnetic resonance imaging before and one year after surgery, LTCD assessed by the general cognitive performance (GCP) score over 6 years post-operatively, and delirium in 117 elective surgery patients without dementia (mean age = 76). The annual change in cortical thickness was 0.2(1.7) % (AD-signature p = 0.09) and 0.4(1.7) % (aging-signature p = 0.01). Greater atrophy was associated with LTCD (AD-signature: beta(CI) = 0.24(0.06–0.42) points of GCP/mm of cortical thickness; p < 0.01, aging-signature: beta(CI) = 0.55(0.07–1.03); p = 0.03). Atrophy rates were not significantly different between participants with and without delirium. We found an interaction with delirium severity in the association between atrophy and LTCD (AD-signature: beta(CI) = 0.04(0.00–0.08), p = 0.04; aging-signature: beta(CI) = 0.08(0.03–0.12), p < 0.01). The rate of cortical atrophy and severity of delirium are independent, synergistic factors determining postoperative cognitive decline in the elderly.
{"title":"Relationship between cortical brain atrophy, delirium, and long-term cognitive decline in older surgical patients","authors":"Michele Cavallari , Alexandra Touroutoglou , Yuta Katsumi , Tamara G. Fong , Eva Schmitt , Thomas G. Travison , Mouhsin M. Shafi , Towia A. Libermann , Edward R. Marcantonio , David C. Alsop , Richard N. Jones , Sharon K. Inouye , Bradford C. Dickerson , for the SAGES study group","doi":"10.1016/j.neurobiolaging.2024.05.008","DOIUrl":"10.1016/j.neurobiolaging.2024.05.008","url":null,"abstract":"<div><p>In older patients, delirium after surgery is associated with long-term cognitive decline (LTCD). The neural substrates of this association are unclear. Neurodegenerative changes associated with dementia are possible contributors. We investigated the relationship between brain atrophy rates in Alzheimer’s disease (AD) and cognitive aging signature regions from magnetic resonance imaging before and one year after surgery, LTCD assessed by the general cognitive performance (GCP) score over 6 years post-operatively, and delirium in 117 elective surgery patients without dementia (mean age = 76). The annual change in cortical thickness was 0.2(1.7) % (AD-signature p = 0.09) and 0.4(1.7) % (aging-signature p = 0.01). Greater atrophy was associated with LTCD (AD-signature: beta(CI) = 0.24(0.06–0.42) points of GCP/mm of cortical thickness; p < 0.01, aging-signature: beta(CI) = 0.55(0.07–1.03); p = 0.03). Atrophy rates were not significantly different between participants with and without delirium. We found an interaction with delirium severity in the association between atrophy and LTCD (AD-signature: beta(CI) = 0.04(0.00–0.08), p = 0.04; aging-signature: beta(CI) = 0.08(0.03–0.12), p < 0.01). The rate of cortical atrophy and severity of delirium are independent, synergistic factors determining postoperative cognitive decline in the elderly.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"140 ","pages":"Pages 130-139"},"PeriodicalIF":4.2,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.neurobiolaging.2024.05.001
Daniel E. Gustavson , Jeremy A. Elman , Chandra A. Reynolds , Lisa T. Eyler , Christine Fennema-Notestine , Olivia K. Puckett , Matthew S. Panizzon , Nathan A. Gillespie , Michael C. Neale , Michael J. Lyons , Carol E. Franz , William S. Kremen
We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or APOE genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (r=.10, p=.040) and less decline in executive function over 12 years (r=.34, p=.001). These associations were not moderated by cognitive reserve or APOE genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or APOE genotype.
{"title":"Brain reserve in midlife is associated with executive function changes across 12 years","authors":"Daniel E. Gustavson , Jeremy A. Elman , Chandra A. Reynolds , Lisa T. Eyler , Christine Fennema-Notestine , Olivia K. Puckett , Matthew S. Panizzon , Nathan A. Gillespie , Michael C. Neale , Michael J. Lyons , Carol E. Franz , William S. Kremen","doi":"10.1016/j.neurobiolaging.2024.05.001","DOIUrl":"10.1016/j.neurobiolaging.2024.05.001","url":null,"abstract":"<div><p>We examined how brain reserve in midlife, measured by brain-predicted age difference scores (Brain-PADs), predicted executive function concurrently and longitudinally into early old age, and whether these associations were moderated by young adult cognitive reserve or <em>APOE</em> genotype. 508 men in the Vietnam Era Twin Study of Aging (VETSA) completed neuroimaging assessments at mean age 56 and six executive function tasks at mean ages 56, 62, and 68 years. Results indicated that greater brain reserve at age 56 was associated with better concurrent executive function (<em>r</em>=.10, <em>p</em>=.040) and less decline in executive function over 12 years (<em>r</em>=.34, <em>p</em>=.001). These associations were not moderated by cognitive reserve or <em>APOE</em> genotype. Twin analysis suggested associations with executive function slopes were driven by genetic influences. Our findings suggest that greater brain reserve allowed for better cognitive maintenance from middle- to old age, driven by a genetic association. The results are consistent with differential preservation of executive function based on brain reserve that is independent of young adult cognitive reserve or <em>APOE</em> genotype.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 113-120"},"PeriodicalIF":4.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141023952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.neurobiolaging.2024.05.005
Ana T. Vitantonio , Christina Dimovasili , Farzad Mortazavi , Kelli L. Vaughan , Julie A. Mattison , Douglas L. Rosene
Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.
卡路里限制(CR)是一种强有力的干预措施,可以延缓生物衰老并延长寿命。在大脑中,终末分化的神经元和胶质细胞会随着年龄的增长而积累氧化损伤,从而降低其最佳功能。我们研究了 CR 是否能减少白质少突胶质细胞和小胶质细胞的 DNA 氧化损伤。这项研究利用了猕猴的死后脑组织,这些猕猴在减少 30% 热量饮食数十年后死亡。我们发现,CR 受试者胼胝体和蝶鞍束中的氧化损伤细胞明显减少。尤其是少突胶质细胞对 CR 的反应最大,DNA 损伤明显减少。此外,我们还观察到小胶质细胞形态的改变,与对照组相比,CR 受试者具有较高比例的横纹化、平衡性小胶质细胞,而具有较少比例的促炎性、肥大性小胶质细胞。此外,我们还确定,观察到的受损 DNA 减少主要发生在线粒体中。总之,这些数据表明,长期CR可以减少氧化DNA损伤,并以细胞类型特异性的方式为衰老猴脑提供神经保护作用。
{"title":"Long-term calorie restriction reduces oxidative DNA damage to oligodendroglia and promotes homeostatic microglia in the aging monkey brain","authors":"Ana T. Vitantonio , Christina Dimovasili , Farzad Mortazavi , Kelli L. Vaughan , Julie A. Mattison , Douglas L. Rosene","doi":"10.1016/j.neurobiolaging.2024.05.005","DOIUrl":"10.1016/j.neurobiolaging.2024.05.005","url":null,"abstract":"<div><p>Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 1-13"},"PeriodicalIF":4.2,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141033409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-15DOI: 10.1016/j.neurobiolaging.2024.05.009
Qian Yang , Xueyan Zhou , Tao Ma
Synaptic dysfunction is highly correlated with cognitive impairments in Alzheimer’s disease (AD), the most common dementia syndrome in the elderly. Long-term potentiation (LTP) and long-term depression (LTD) are two primary forms of synaptic plasticity with opposite direction of synaptic efficiency change. Both LTD and LTD are considered to mediate the cellular process of learning and memory. Substantial studies demonstrate AD-associated deficiency of both LTP and LTD. Meanwhile, the molecular signaling mechanisms underlying impairment of synaptic plasticity, particularly LTD, are poorly understood. By taking advantage of the novel transgenic mouse models recently developed in our lab, here we aimed to investigate the roles of AMP-activated protein kinase (AMPK), a central molecular senor that plays a critical role in maintaining cellular energy homeostasis, in regulation of LTD phenotypes in AD. We found that brain-specific suppression of the AMPKα1 isoform (but not AMPKα2 isoform) was able to alleviate mGluR-LTD deficits in APP/PS1 AD mouse model. Moreover, suppression of either AMPKα isoform failed to alleviate AD-related NMDAR-dependent LTD deficits. Taken together with our recent studies on roles of AMPK signaling in AD pathophysiology, the data indicate isoform-specific roles of AMPK in mediating AD-associated synaptic and cognitive impairments.
{"title":"Isoform-specific effects of neuronal inhibition of AMPK catalytic subunit on LTD impairments in a mouse model of Alzheimer’s disease","authors":"Qian Yang , Xueyan Zhou , Tao Ma","doi":"10.1016/j.neurobiolaging.2024.05.009","DOIUrl":"10.1016/j.neurobiolaging.2024.05.009","url":null,"abstract":"<div><p>Synaptic dysfunction is highly correlated with cognitive impairments in Alzheimer’s disease (AD), the most common dementia syndrome in the elderly. Long-term potentiation (LTP) and long-term depression (LTD) are two primary forms of synaptic plasticity with opposite direction of synaptic efficiency change. Both LTD and LTD are considered to mediate the cellular process of learning and memory. Substantial studies demonstrate AD-associated deficiency of both LTP and LTD. Meanwhile, the molecular signaling mechanisms underlying impairment of synaptic plasticity, particularly LTD, are poorly understood. By taking advantage of the novel transgenic mouse models recently developed in our lab, here we aimed to investigate the roles of AMP-activated protein kinase (AMPK), a central molecular senor that plays a critical role in maintaining cellular energy homeostasis, in regulation of LTD phenotypes in AD. We found that brain-specific suppression of the AMPKα1 isoform (but not AMPKα2 isoform) was able to alleviate mGluR-LTD deficits in APP/PS1 AD mouse model. Moreover, suppression of either AMPKα isoform failed to alleviate AD-related NMDAR-dependent LTD deficits. Taken together with our recent studies on roles of AMPK signaling in AD pathophysiology, the data indicate isoform-specific roles of AMPK in mediating AD-associated synaptic and cognitive impairments.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"140 ","pages":"Pages 116-121"},"PeriodicalIF":4.2,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141065886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.neurobiolaging.2024.05.003
Yueh-Sheng Chen , Chen-Yuan Kuo , Cheng-Hsien Lu , Yuan-Wei Wang , Kun-Hsien Chou , Wei-Che Lin
Brain biological age, which measures the aging process in the brain using neuroimaging data, has been used to assess advanced brain aging in neurodegenerative diseases, including Parkinson disease (PD). However, assuming that whole brain degeneration is uniform may not be sufficient for assessing the complex neurodegenerative processes in PD. In this study we constructed a multiscale brain age prediction models based on structural MRI of 1240 healthy participants. To assess the brain aging patterns using the brain age prediction model, 93 PD patients and 91 healthy controls matching for sex and age were included. We found increased global and regional brain age in PD patients. The advanced aging regions were predominantly noted in the frontal and temporal cortices, limbic system, basal ganglia, thalamus, and cerebellum. Furthermore, region-level rather than global brain age in PD patients was associated with disease severity. Our multiscale brain age prediction model could aid in the development of objective image-based biomarkers to detect advanced brain aging in neurodegenerative diseases.
{"title":"Multiscale brain age prediction reveals region-specific accelerated brain aging in Parkinson's disease","authors":"Yueh-Sheng Chen , Chen-Yuan Kuo , Cheng-Hsien Lu , Yuan-Wei Wang , Kun-Hsien Chou , Wei-Che Lin","doi":"10.1016/j.neurobiolaging.2024.05.003","DOIUrl":"10.1016/j.neurobiolaging.2024.05.003","url":null,"abstract":"<div><p>Brain biological age, which measures the aging process in the brain using neuroimaging data, has been used to assess advanced brain aging in neurodegenerative diseases, including Parkinson disease (PD). However, assuming that whole brain degeneration is uniform may not be sufficient for assessing the complex neurodegenerative processes in PD. In this study we constructed a multiscale brain age prediction models based on structural MRI of 1240 healthy participants. To assess the brain aging patterns using the brain age prediction model, 93 PD patients and 91 healthy controls matching for sex and age were included. We found increased global and regional brain age in PD patients. The advanced aging regions were predominantly noted in the frontal and temporal cortices, limbic system, basal ganglia, thalamus, and cerebellum. Furthermore, region-level rather than global brain age in PD patients was associated with disease severity. Our multiscale brain age prediction model could aid in the development of objective image-based biomarkers to detect advanced brain aging in neurodegenerative diseases.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"140 ","pages":"Pages 122-129"},"PeriodicalIF":4.2,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.neurobiolaging.2024.05.004
Andréia Abud da Silva Costa , Renato Moraes , Rob den Otter , Federico Gennaro , Lisanne Bakker , Paulo Cezar Rocha dos Santos , Tibor Hortobágyi
We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance.
Data Availability
The datasets used in this study are available from the corresponding author upon reasonable request.
{"title":"Corticomuscular and intermuscular coherence as a function of age and walking balance difficulty","authors":"Andréia Abud da Silva Costa , Renato Moraes , Rob den Otter , Federico Gennaro , Lisanne Bakker , Paulo Cezar Rocha dos Santos , Tibor Hortobágyi","doi":"10.1016/j.neurobiolaging.2024.05.004","DOIUrl":"10.1016/j.neurobiolaging.2024.05.004","url":null,"abstract":"<div><p>We determined beta-band intermuscular (IMC) and corticomuscular coherence (CMC) as a function of age and walking balance difficulty. Younger (n=14, 23y) and older individuals (n=19, 71y) walked 13 m overground, on a 6-cm-wide ribbon overground, and on a 6-cm-wide (5-cm-high) beam. Walking distance as a proxy for walking balance and speed were computed. CMC was estimated between electroencephalographic signal at Cz electrode and surface electromyographic signals of seven leg muscles, while IMC was calculated in four pairs of leg muscles, during stance and swing gait phases. With increasing difficulty, walking balance decreased in old individuals and speed decreased gradually independent of age. Beam walking increased IMC, while age increased IMC in proximal muscle pairs, and decreased IMC in distal muscle pairs. Age and difficulty increased CMC independent of gait phases. Concluding, CMC and IMC increased with walking balance difficulty and age, except for distal muscle pairs, which had lower IMC with age. These findings suggest an age-related increase in corticospinal involvement in the neural control of walking balance.</p></div><div><h3>Data Availability</h3><p>The datasets used in this study are available from the corresponding author upon reasonable request.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 85-101"},"PeriodicalIF":4.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrocytes in Alzheimer’s disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, in vivo, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (β = 0.411, p < 0.001), ET-1 levels (β = 0.344, p < 0.001) and VEGF (β = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.
{"title":"Astrocytic-derived vascular remodeling factors are independently associated with blood brain barrier permeability in Alzheimer’s disease","authors":"Francesca Bernocchi , Chiara Giuseppina Bonomi , Martina Assogna , Alessandra Moreschini , Nicola Biagio Mercuri , Giacomo Koch , Alessandro Martorana , Caterina Motta","doi":"10.1016/j.neurobiolaging.2024.05.002","DOIUrl":"10.1016/j.neurobiolaging.2024.05.002","url":null,"abstract":"<div><p>Astrocytes in Alzheimer’s disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, <em>in vivo</em>, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (β = 0.411, p < 0.001), ET-1 levels (β = 0.344, p < 0.001) and VEGF (β = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"141 ","pages":"Pages 66-73"},"PeriodicalIF":4.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024000940/pdfft?md5=1e3235e3d61f96cf40975066f2a4fac2&pid=1-s2.0-S0197458024000940-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-13DOI: 10.1016/j.neurobiolaging.2024.02.016
Jodie H.K. Man , Marjolein Breur , Charlotte A.G.H. van Gelder , Gabriella Marcon , Emanuela Maderna , Giorgio Giaccone , Maarten Altelaar , Marjo S. van der Knaap , Marianna Bugiani
Astrocyte heterogeneity and its relation to aging in the normal human brain remain poorly understood. We here analyzed astrocytes in gray and white matter brain tissues obtained from donors ranging in age between the neonatal period to over 100 years. We show that astrocytes are differently distributed with higher density in the white matter. This regional difference in cellular density becomes less prominent with age. Additionally, we confirm the presence of morphologically distinct astrocytes, with gray matter astrocytes being morphologically more complex. Notably, gray matter astrocytes morphologically change with age, while white matter astrocytes remain relatively consistent in morphology. Using regional mass spectrometry-based proteomics, we did, however, identify astrocyte specific proteins with regional differences in abundance, reflecting variation in cellular density or expression level. Importantly, the expression of some astrocyte specific proteins region-dependently decreases with age. Taken together, we provide insights into region- and age-related differences in astrocytes in the human brain.
{"title":"Region-specific and age-related differences in astrocytes in the human brain","authors":"Jodie H.K. Man , Marjolein Breur , Charlotte A.G.H. van Gelder , Gabriella Marcon , Emanuela Maderna , Giorgio Giaccone , Maarten Altelaar , Marjo S. van der Knaap , Marianna Bugiani","doi":"10.1016/j.neurobiolaging.2024.02.016","DOIUrl":"10.1016/j.neurobiolaging.2024.02.016","url":null,"abstract":"<div><p>Astrocyte heterogeneity and its relation to aging in the normal human brain remain poorly understood. We here analyzed astrocytes in gray and white matter brain tissues obtained from donors ranging in age between the neonatal period to over 100 years. We show that astrocytes are differently distributed with higher density in the white matter. This regional difference in cellular density becomes less prominent with age. Additionally, we confirm the presence of morphologically distinct astrocytes, with gray matter astrocytes being morphologically more complex. Notably, gray matter astrocytes morphologically change with age, while white matter astrocytes remain relatively consistent in morphology. Using regional mass spectrometry-based proteomics, we did, however, identify astrocyte specific proteins with regional differences in abundance, reflecting variation in cellular density or expression level. Importantly, the expression of some astrocyte specific proteins region-dependently decreases with age. Taken together, we provide insights into region- and age-related differences in astrocytes in the human brain.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"140 ","pages":"Pages 102-115"},"PeriodicalIF":4.2,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024000915/pdfft?md5=ccb9e4d8a6e600bbd34df6ea435d8909&pid=1-s2.0-S0197458024000915-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141041571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1016/j.neurobiolaging.2024.04.009
Toms Voits , Vincent DeLuca , Jiuzhou Hao , Kirill Elin , Jubin Abutalebi , Jon Andoni Duñabeitia , Gaute Berglund , Anders Gabrielsen , Janine Rook , Hilde Thomsen , Philipp Waagen , Jason Rothman
Multilingualism has been demonstrated to lead to a more favorable trajectory of neurocognitive aging, yet our understanding of its effect on neurocognition across the lifespan remains limited. We collected resting state EEG recordings from a sample of multilingual individuals across a wide age range. Additionally, we obtained data on participant multilingual language use patterns alongside other known lifestyle enrichment factors. Language experience was operationalized via a modified multilingual diversity (MLD) score. Generalized additive modeling was employed to examine the effects and interactions of age and MLD on resting state oscillatory power and coherence. The data suggest an independent modulatory effect of individualized multilingual engagement on age-related differences in whole brain resting state power across alpha and theta bands, and an interaction between age and MLD on resting state coherence in alpha, theta, and low beta. These results provide evidence of multilingual engagement as an independent correlational factor related to differences in resting state EEG power, consistent with the claim that multilingualism can serve as a protective factor in neurocognitive aging.
{"title":"Degree of multilingual engagement modulates resting state oscillatory activity across the lifespan","authors":"Toms Voits , Vincent DeLuca , Jiuzhou Hao , Kirill Elin , Jubin Abutalebi , Jon Andoni Duñabeitia , Gaute Berglund , Anders Gabrielsen , Janine Rook , Hilde Thomsen , Philipp Waagen , Jason Rothman","doi":"10.1016/j.neurobiolaging.2024.04.009","DOIUrl":"https://doi.org/10.1016/j.neurobiolaging.2024.04.009","url":null,"abstract":"<div><p>Multilingualism has been demonstrated to lead to a more favorable trajectory of neurocognitive aging, yet our understanding of its effect on neurocognition across the lifespan remains limited. We collected resting state EEG recordings from a sample of multilingual individuals across a wide age range. Additionally, we obtained data on participant multilingual language use patterns alongside other known lifestyle enrichment factors. Language experience was operationalized via a modified multilingual diversity (MLD) score. Generalized additive modeling was employed to examine the effects and interactions of age and MLD on resting state oscillatory power and coherence. The data suggest an independent modulatory effect of individualized multilingual engagement on age-related differences in whole brain resting state power across alpha and theta bands, and an interaction between age and MLD on resting state coherence in alpha, theta, and low beta. These results provide evidence of multilingual engagement as an independent correlational factor related to differences in resting state EEG power, consistent with the claim that multilingualism can serve as a protective factor in neurocognitive aging.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"140 ","pages":"Pages 70-80"},"PeriodicalIF":4.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024000812/pdfft?md5=91ab4ec1f4689276d60ba6253f0e106d&pid=1-s2.0-S0197458024000812-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1016/j.neurobiolaging.2024.04.012
Ana J. Chucair-Elliott , Sarah R. Ocañas , Kevin Pham , Adeline Machalinski , Scott Plafker , Michael B. Stout , Michael H. Elliott , Willard M. Freeman
Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear.
Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.
{"title":"Age- and sex- divergent translatomic responses of the mouse retinal pigmented epithelium","authors":"Ana J. Chucair-Elliott , Sarah R. Ocañas , Kevin Pham , Adeline Machalinski , Scott Plafker , Michael B. Stout , Michael H. Elliott , Willard M. Freeman","doi":"10.1016/j.neurobiolaging.2024.04.012","DOIUrl":"https://doi.org/10.1016/j.neurobiolaging.2024.04.012","url":null,"abstract":"<div><p>Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear.</p><p>Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for <em>in vivo</em> studies.</p></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"140 ","pages":"Pages 41-59"},"PeriodicalIF":4.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197458024000848/pdfft?md5=953cde36b4570c890001b2e1326b8fb1&pid=1-s2.0-S0197458024000848-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}