Pub Date : 2024-05-04DOI: 10.1134/s1063739723600231
D. V. Nefedov, N. O. Shabunin, D. N. Bratashov
Abstract
The influence of current activation by the breakdown of the electric pulse on changes in the surface morphology and emission characteristics of a field emission (FE) cathode made based on carbon films obtained by deposition in a microwave gas discharge plasma is studied. The current activation of these films is carried out by applying microsecond voltage pulses until an electrical breakdown occurred. It is shown that during the activation, the morphology of the film surface in the breakdown region changes with the formation of a microsized emitting structure, which significantly improves the FE characteristics of the cathodes based on carbon films.
摘要 研究了电脉冲击穿电流活化对基于在微波气体放电等离子体中沉积获得的碳薄膜制成的场发射(FE)阴极的表面形态和发射特性变化的影响。这些薄膜的电流活化是通过施加微秒级电压脉冲进行的,直到发生电击穿。结果表明,在活化过程中,击穿区域的薄膜表面形态发生了变化,形成了微小的发射结构,从而显著改善了基于碳薄膜的阴极的 FE 特性。
{"title":"Structuring of the Surface of Thin Carbon Films during Activation by Microsecond Current Pulses","authors":"D. V. Nefedov, N. O. Shabunin, D. N. Bratashov","doi":"10.1134/s1063739723600231","DOIUrl":"https://doi.org/10.1134/s1063739723600231","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The influence of current activation by the breakdown of the electric pulse on changes in the surface morphology and emission characteristics of a field emission (FE) cathode made based on carbon films obtained by deposition in a microwave gas discharge plasma is studied. The current activation of these films is carried out by applying microsecond voltage pulses until an electrical breakdown occurred. It is shown that during the activation, the morphology of the film surface in the breakdown region changes with the formation of a microsized emitting structure, which significantly improves the FE characteristics of the cathodes based on carbon films.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"115 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140885465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1134/s1063739723600334
O. L. Golikov, I. Yu. Zabavichev, A. S. Ivanov, S. V. Obolensky, E. S. Obolenskaya, D. G. Paveliev, A. A. Potekhin, A. S. Puzanov, E. A. Tarasova, S. V. Khazanova
Abstract
A set of transfer and output current–voltage characteristics of a bipolar transistor with a short-period superlattice in the emitter region are calculated. It is shown that the presence of a superlattice in the transistor structure leads to the formation of a negative differential conductivity region, which makes it possible to implement not only amplification but also the generation and multiplication of high-frequency oscillations.
{"title":"Electron Transport in a Bipolar Transistor with a Superlattice in the Emitter","authors":"O. L. Golikov, I. Yu. Zabavichev, A. S. Ivanov, S. V. Obolensky, E. S. Obolenskaya, D. G. Paveliev, A. A. Potekhin, A. S. Puzanov, E. A. Tarasova, S. V. Khazanova","doi":"10.1134/s1063739723600334","DOIUrl":"https://doi.org/10.1134/s1063739723600334","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A set of transfer and output current–voltage characteristics of a bipolar transistor with a short-period superlattice in the emitter region are calculated. It is shown that the presence of a superlattice in the transistor structure leads to the formation of a negative differential conductivity region, which makes it possible to implement not only amplification but also the generation and multiplication of high-frequency oscillations.</p>","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1134/s1063739723600127
M. M. Asadov, S. O. Mammadova, S. N. Mustafaeva, S. S. Huseynova, V. F. Lukichev
Abstract
The T–x phase diagram of the quasi-binary system ({text{L}}{{{text{i}}}_{2}}{text{O}}- {text{Ti}}{{{text{O}}}_{2}}) was refined and the isothermal cross section of the ternary ({text{Li}}- {text{Ti}}- {text{O}}) system at 298 K was constructed. The equilibrium phase regions of ({text{Li}}- {text{Ti}}- {text{O}}) in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds ({text{L}}{{{text{i}}}_{4}}{text{Ti}}{{{text{O}}}_{4}}), ({text{L}}{{{text{i}}}_{2}}{text{Ti}}{{{text{O}}}_{3}}), ({text{L}}{{{text{i}}}_{4}}{text{T}}{{{text{i}}}_{5}}{{{text{O}}}_{{12}}}) and ({text{L}}{{{text{i}}}_{2}}{text{T}}{{{text{i}}}_{3}}{{{text{O}}}_{7}}). Using the density functional theory (DFT LSDA) method, the formation energies (({{Delta }_{f}}E)) of the indicated ternary compounds of the ({text{L}}{{{text{i}}}_{2}}{text{O}}- {text{Ti}}{{{text{O}}}_{2}}) system were calculated and the dependence of ({{Delta }_{f}}E) on the composition was plotted. Ab initio modeling of supercells based on M-doped (left( {{text{M }} = {text{ Zr}},{text{ Nb}}} right)) anode material based on the ({text{L}}{{{text{i}}}_{4}}{text{T}}{{{text{i}}}_{5}}{{{text{O}}}_{{12}}}) (({text{LTO}})) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the ({text{m}}- {text{LTO}}- {text{M}}) structure increases the efficiency of a lithium-ion battery (({text{LIB}})) both by stabilizing the structure and by increasing the diffusion rate of ({text{L}}{{{text{i}}}^{ + }}). Due to the contribution of d-orbitals (({text{Z}}{{{text{r}}}^{{4 + }}},,4{text{d}},)({text{N}}{{{text{b}}}^{{3 + }}}) 4d orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of ({text{m}}- {text{LTO}}- {text{M}}) increases. The formation of oxygen vacancies in the ({text{m}}- {text{LTO}}- {text{M}}) crystal lattice, as in binary oxides, can create donor levels and improve the transport of ({text{L}}{{{text{i}}}^{ + }}) and electrons. M-doping of the ({text{m}}- {text{LTO}}) structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (({{E}_{{text{g}}}})) of ({text{m}}- {text{LTO}}- {text{M}}) supercells. In this case, in the ({text{m}}- {text{LTO}}- {text{M}}) band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the ({{E}_{{text{g}}}}) value increases the electronic and lithium-ion conductivity of ({text{m}}- {text{LTO}}- {text{M}}) supercells
摘要 完善了准二元体系({text{L}}{{text{i}}}_{2}}{text{O}}- {text{Ti}}{{text{O}}}_{2}})的T-x相图,并构建了三元({text{Li}}- {text{Ti}}-{text{O}}})体系在298 K下的等温截面。在边界二元氧化物和四种中间三元化合物 ({{L}}{{text{i}}_{4}}{text{Ti}}{{{text{O}}} 的参与下,确定了 ({{L}}{{text{i}}_{4}}{text{Ti}}{{{text{O}}}_{4}}) 在固态下的平衡相区、({text{L}}{{{text{i}}}_{2}}{text{Ti}}{{{text{O}}}_{3}}),({text{L}}{{{text{i}}}_{4}}{text{T}}{{{text{i}}}_{5}}{{{text{O}}}_{{12}}}) and ({text{L}}{{{text{i}}}_{2}}{text{T}}{{{text{i}}}_{3}}{{{text{O}}}_{7}}).使用密度泛函理论(DFT LSDA)方法、({text{L}}{{text{i}}}_{2}}{text{O}}-{text{Ti}}{{text{O}}}_{2}})体系的三元化合物的形成能(({{Delta }_{f}}E)),并绘制了({{Delta }_{f}}E)对组成的依赖关系图。基于掺杂 M 的超级电池的 Ab initio 建模({{text{M }} = {text{ Zr}}、({text{L}}{{text{i}}}_{4}}{text{T}}{{text{i}}}_{5}}{{{text{O}}}}_{12}}}})化合物的单斜结构(m)为基础的正极材料进行了 Ab initio 建模。研究表明,在({text{m}}- {text{LTO}}- {text{M}})结构中部分取代阳离子和氧可以通过稳定结构和提高({text{L}}{{text{i}}}^{ + }})的扩散速率来提高锂离子电池(({text{LIB}}))的效率。由于 d 轨道(({text{Z}}{{text{r}}^{4 + }}},4{text{d}},) ({text{N}}{{text{b}}^{3 + }}}) 4d 轨道)对交换能的贡献、电子态发生部分极化,({text{m}}- {text{LTO}}- {text{M}})的电子传导性增加。与二元氧化物一样,在({{m}}- {{LTO}}- {{M}})晶格中形成的氧空位可以产生供体水平,改善({L}}{{i}}^{ + }})和电子的传输。通过用锆原子或铌原子取代阳离子,特别是锂原子,对({text{m}}- {text{LTO}})结构进行M掺杂,可以明显降低({text{m}}- {text{LTO}}-{text{M}})超级电池的带隙(({{E}_{text{g}}}}))。在这种情况下,在({/text{m}}- {text{LTO}}- {/text{M}}/)带状结构中,费米级向导带移动,带隙变窄。降低({{E}_{text/{g}}}}/)值可以提高({text{m}}- {text{LTO}}- {text{M}}/)超级电池的电子和锂离子电导率。
{"title":"Modeling of the Electronic Properties of M-Doped Supercells Li4Ti5O12–M (М = Zr, Nb) with a Monoclinic Structure for Lithium-Ion Batteries","authors":"M. M. Asadov, S. O. Mammadova, S. N. Mustafaeva, S. S. Huseynova, V. F. Lukichev","doi":"10.1134/s1063739723600127","DOIUrl":"https://doi.org/10.1134/s1063739723600127","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The T–<i>x</i> phase diagram of the quasi-binary system <span>({text{L}}{{{text{i}}}_{2}}{text{O}}- {text{Ti}}{{{text{O}}}_{2}})</span> was refined and the isothermal cross section of the ternary <span>({text{Li}}- {text{Ti}}- {text{O}})</span> system at 298 K was constructed. The equilibrium phase regions of <span>({text{Li}}- {text{Ti}}- {text{O}})</span> in the solid state are determined with the participation of boundary binary oxides and four intermediate ternary compounds <span>({text{L}}{{{text{i}}}_{4}}{text{Ti}}{{{text{O}}}_{4}})</span>, <span>({text{L}}{{{text{i}}}_{2}}{text{Ti}}{{{text{O}}}_{3}})</span>, <span>({text{L}}{{{text{i}}}_{4}}{text{T}}{{{text{i}}}_{5}}{{{text{O}}}_{{12}}})</span> and <span>({text{L}}{{{text{i}}}_{2}}{text{T}}{{{text{i}}}_{3}}{{{text{O}}}_{7}})</span>. Using the density functional theory (DFT LSDA) method, the formation energies <span>(({{Delta }_{f}}E))</span> of the indicated ternary compounds of the <span>({text{L}}{{{text{i}}}_{2}}{text{O}}- {text{Ti}}{{{text{O}}}_{2}})</span> system were calculated and the dependence of <span>({{Delta }_{f}}E)</span> on the composition was plotted. Ab initio modeling of supercells based on M-doped <span>(left( {{text{M }} = {text{ Zr}},{text{ Nb}}} right))</span> anode material based on the <span>({text{L}}{{{text{i}}}_{4}}{text{T}}{{{text{i}}}_{5}}{{{text{O}}}_{{12}}})</span> (<span>({text{LTO}})</span>) compound with a monoclinic structure (m) was carried out. It has been shown that partial substitution of cations and oxygen in the <span>({text{m}}- {text{LTO}}- {text{M}})</span> structure increases the efficiency of a lithium-ion battery (<span>({text{LIB}})</span>) both by stabilizing the structure and by increasing the diffusion rate of <span>({text{L}}{{{text{i}}}^{ + }})</span>. Due to the contribution of d-orbitals (<span>({text{Z}}{{{text{r}}}^{{4 + }}},,4{text{d}},)</span> <span>({text{N}}{{{text{b}}}^{{3 + }}})</span> 4d orbitals) to the exchange energy, partial polarization of electronic states occurs and the electronic conductivity of <span>({text{m}}- {text{LTO}}- {text{M}})</span> increases. The formation of oxygen vacancies in the <span>({text{m}}- {text{LTO}}- {text{M}})</span> crystal lattice, as in binary oxides, can create donor levels and improve the transport of <span>({text{L}}{{{text{i}}}^{ + }})</span> and electrons. M-doping of the <span>({text{m}}- {text{LTO}})</span> structure by replacing cations, in particular lithium, with Zr or Nb atoms noticeably reduces the band gap (<span>({{E}_{{text{g}}}})</span>) of <span>({text{m}}- {text{LTO}}- {text{M}})</span> supercells. In this case, in the <span>({text{m}}- {text{LTO}}- {text{M}})</span> band structure, the Fermi level shifts to the conduction band and the band gap narrows. Decreasing the <span>({{E}_{{text{g}}}})</span> value increases the electronic and lithium-ion conductivity of <span>({text{m}}- {text{LTO}}- {text{M}})</span> supercells","PeriodicalId":21534,"journal":{"name":"Russian Microelectronics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140884387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}