Pub Date : 2024-03-26DOI: 10.1016/j.sbsr.2024.100642
Ying Zhou , Shiling Zheng , Wei Qin
The biochemical oxygen demand (BOD) is critical for assessing water quality, linking the quantity of biodegradable organic carbon with pollution levels. Electrochemical biosensors have shown great improvements over traditional BOD measurement methods by offering the advantages of simplicity, rapid response, high sensitivity, and real-time monitoring. In this review, we discuss different types of BOD electrochemical biosensors, including oxygen electrode-, microbial fuel cell (MFC)-, and microbial electrolysis cell (MEC)-type sensors, focusing on recent advances in microbial community composition, electrode materials, and optimization approaches. Moreover, current challenges in developing effective electrochemical biosensors for BOD detection are presented to meet diverse sample needs.
生化需氧量(BOD)是评估水质的关键,它将可生物降解有机碳的数量与污染程度联系在一起。与传统的 BOD 测量方法相比,电化学生物传感器具有操作简单、反应迅速、灵敏度高和可实时监测等优点,因而有了很大的改进。在这篇综述中,我们讨论了不同类型的 BOD 电化学生物传感器,包括氧电极、微生物燃料电池 (MFC) 和微生物电解池 (MEC) 型传感器,重点介绍了微生物群落组成、电极材料和优化方法方面的最新进展。此外,还介绍了目前在开发用于 BOD 检测的有效电化学生物传感器以满足不同样品需求方面所面临的挑战。
{"title":"Electrochemical biochemical oxygen demand biosensors and their applications in aquatic environmental monitoring","authors":"Ying Zhou , Shiling Zheng , Wei Qin","doi":"10.1016/j.sbsr.2024.100642","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100642","url":null,"abstract":"<div><p>The biochemical oxygen demand (BOD) is critical for assessing water quality, linking the quantity of biodegradable organic carbon with pollution levels. Electrochemical biosensors have shown great improvements over traditional BOD measurement methods by offering the advantages of simplicity, rapid response, high sensitivity, and real-time monitoring. In this review, we discuss different types of BOD electrochemical biosensors, including oxygen electrode-, microbial fuel cell (MFC)-, and microbial electrolysis cell (MEC)-type sensors, focusing on recent advances in microbial community composition, electrode materials, and optimization approaches. Moreover, current challenges in developing effective electrochemical biosensors for BOD detection are presented to meet diverse sample needs.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100642"},"PeriodicalIF":5.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000242/pdfft?md5=ad2b4cd067132d257d313ecc9c920903&pid=1-s2.0-S2214180424000242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-26DOI: 10.1016/j.sbsr.2024.100644
Sofiia Tvorynska , Alba Civera , Maria Gamella , Rebeca M. Torrente-Rodríguez , María Pedrero , Patricia Galán-Malo , Luis Mata , Lourdes Sánchez , Jiří Barek , José M. Pingarrón , María D. Pérez , Susana Campuzano
Nuts are a well-known cause of food allergy and, once this has been diagnosed, due to the likelihood of cross-sensitization to multiple tree nut allergens, their strict avoidance from the diet is advisable. In this context, we present electrochemical bioplatforms to detect traces of hazelnut and walnut in processed foods through the determination of their respective allergenic proteins Cor a 9 and Jug r 1 in a fast and sensitive assay. First, the evaluation of the single determination of both proteins was performed by building sandwich immunoconjugates on the surface of magnetic microbeads relying on specific antibodies unmodified or conjugated to horseradish peroxidase. Amperometric transduction was made upon trapping the magnetic bioconjugates on the surface of disposable carbon electrodes, using the hydroquinone/hydrogen peroxide system. The great analytical performance achieved with the individual platforms (detection limits of 0.12 and 0.56 ng mL−1 for Jug r 1 and Cor a 9, respectively), led us to the individual and dual quantification of both proteins in raw dough and baked cookies incurred with ground nuts. The developed method allowed detecting baked cookies incurred with 0.0025% ground walnut and 0.00002% ground hazelnut with results comparable to those provided by ELISA techniques. The feasibility of performing the dual determination of both allergens in a single run was demonstrated.
坚果是众所周知的食物过敏原,一旦确诊,由于可能会对多种树坚果过敏原交叉过敏,因此建议在饮食中严格避免食用坚果。在这种情况下,我们提出了一种电化学生物平台,通过快速灵敏的检测方法测定榛子和核桃各自的致敏蛋白 Cor a 9 和 Jug r 1,从而检测加工食品中的榛子和核桃痕量。首先,通过在磁性微珠表面使用未修饰或与辣根过氧化物酶共轭的特异性抗体构建夹心免疫共轭物,对这两种蛋白质的单一测定进行了评估。利用对苯二酚/过氧化氢系统,在一次性碳电极表面捕获磁性生物共轭物,进行安培转导。单个平台的分析性能很好(Jug r 1 和 Cor a 9 的检测限分别为 0.12 和 0.56 纳克/毫升),因此我们可以对生面团和用碎坚果制成的烘焙饼干中的两种蛋白质进行单独和双重定量。所开发的方法可检测出含有 0.0025% 核桃碎和 0.00002% 榛子碎的烘焙饼干,其结果与 ELISA 技术提供的结果相当。一次运行同时测定两种过敏原的可行性已得到证实。
{"title":"Electrochemical immunosensing of walnut and hazelnut allergenic proteins in processed foods","authors":"Sofiia Tvorynska , Alba Civera , Maria Gamella , Rebeca M. Torrente-Rodríguez , María Pedrero , Patricia Galán-Malo , Luis Mata , Lourdes Sánchez , Jiří Barek , José M. Pingarrón , María D. Pérez , Susana Campuzano","doi":"10.1016/j.sbsr.2024.100644","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100644","url":null,"abstract":"<div><p>Nuts are a well-known cause of food allergy and, once this has been diagnosed, due to the likelihood of cross-sensitization to multiple tree nut allergens, their strict avoidance from the diet is advisable. In this context, we present electrochemical bioplatforms to detect traces of hazelnut and walnut in processed foods through the determination of their respective allergenic proteins Cor a 9 and Jug r 1 in a fast and sensitive assay. First, the evaluation of the single determination of both proteins was performed by building sandwich immunoconjugates on the surface of magnetic microbeads relying on specific antibodies unmodified or conjugated to horseradish peroxidase. Amperometric transduction was made upon trapping the magnetic bioconjugates on the surface of disposable carbon electrodes, using the hydroquinone/hydrogen peroxide system. The great analytical performance achieved with the individual platforms (detection limits of 0.12 and 0.56 ng mL<sup>−1</sup> for Jug r 1 and Cor a 9, respectively), led us to the individual and dual quantification of both proteins in raw dough and baked cookies incurred with ground nuts. The developed method allowed detecting baked cookies incurred with 0.0025% ground walnut and 0.00002% ground hazelnut with results comparable to those provided by ELISA techniques. The feasibility of performing the dual determination of both allergens in a single run was demonstrated.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100644"},"PeriodicalIF":5.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000266/pdfft?md5=c60ee253eb0d387961a60fd6e6a67c7a&pid=1-s2.0-S2214180424000266-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140328159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, a simple, fast and sensitive voltammetric detection using boron-doped diamond (BDD) electrode was proposed for simultaneous quantification of benzene (BZ), naphthalene (NF) and anthracene (AC) from priority organic pollutants class in real tap water. The electrochemical behaviors of individual and simultaneous BZ, NF and AC studied by cyclic voltammetry (CV) on BDD electrode showed a large separation between their oxidation potential, which allowed the development of simple simultaneous detection method. Differential-pulse voltammetry (DPV) technique operated at step potential of 5 mV and modulation amplitude of 200 mV enabled to reach the lowest limits of detection of 0.40 μM for BZ, 0.04 μM for NF and 0.70 nM for AC, which is appropriate for water quality control related to their environmental quality standards. No significant influence of chloride ions was found and the method was validated in real tap water and surface water spiked with known concentrations of BZ, NF and AC, which proved the practical utility of the method for water quality control.
本研究提出了一种使用掺硼金刚石(BDD)电极的简单、快速和灵敏的伏安检测方法,用于同时定量真实自来水中优先有机污染物类别中的苯(BZ)、萘(NF)和蒽(AC)。在 BDD 电极上用循环伏安法(CV)研究了 BZ、NF 和 AC 的单独和同时电化学行为,结果表明它们的氧化电位之间存在较大的分离,这为开发简单的同时检测方法提供了条件。差分脉冲伏安(DPV)技术在 5 mV 的阶跃电位和 200 mV 的调制幅度下工作,使 BZ、NF 和 AC 的最低检测限分别为 0.40 μM、0.04 μM 和 0.70 nM,适合于与环境质量标准有关的水质控制。该方法在实际自来水和添加了已知浓度的 BZ、NF 和 AC 的地表水中没有发现明显的氯离子影响,证明了该方法在水质控制中的实用性。
{"title":"Simultaneous voltammetric detection of benzene, naphthalene and anthracene from water using boron-doped diamond electrode","authors":"Aniela Pop , Florica Manea , Anamaria Baciu , Sorina Motoc (m. Ilies)","doi":"10.1016/j.sbsr.2024.100641","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100641","url":null,"abstract":"<div><p>In this study, a simple, fast and sensitive voltammetric detection using boron-doped diamond (BDD) electrode was proposed for simultaneous quantification of benzene (BZ), naphthalene (NF) and anthracene (AC) from priority organic pollutants class in real tap water. The electrochemical behaviors of individual and simultaneous BZ, NF and AC studied by cyclic voltammetry (CV) on BDD electrode showed a large separation between their oxidation potential, which allowed the development of simple simultaneous detection method. Differential-pulse voltammetry (DPV) technique operated at step potential of 5 mV and modulation amplitude of 200 mV enabled to reach the lowest limits of detection of 0.40 μM for BZ, 0.04 μM for NF and 0.70 nM for AC, which is appropriate for water quality control related to their environmental quality standards. No significant influence of chloride ions was found and the method was validated in real tap water and surface water spiked with known concentrations of BZ, NF and AC, which proved the practical utility of the method for water quality control.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100641"},"PeriodicalIF":5.3,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000230/pdfft?md5=41d62b48b62becf79558e6b9870a3105&pid=1-s2.0-S2214180424000230-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140341718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1016/j.sbsr.2024.100640
Yong Wan Cho , Ik Soo Lee , Hye-Won Lim , Young Sook Kim
A biochip assay provides high-throughput and multiplexed analysis of biological samples, chemicals, and natural products. Pruritus is itchiness due to several causes, such as allergy, dry skin, pregnancy, liver disease, kidney disease, and thyroid disease. Treatment of pruritus is associated with reduced immunoglobulin (IgE) and FcεRI levels in sera. Treatment of pruritus include corticosteroid creams or ointment. However, they have side effects, so we need a safer treatment using natural products. Here, we developed an assay using protein chip technology to identify natural products with antipruritic activity that inhibit IgE-FcεRI binding. Of the 28 tested natural product extracts, Corni Fructus extract inhibited human IgE-FcεRI binding and also showed anti-histamine effects in MC/9 mast cells. These results suggest that this protein biochip assay system can be used to identify promising natural product extracts for the treatment of pruritus.
{"title":"Human IgE-FcεRI chip assay to screen natural products for antipruritic activity","authors":"Yong Wan Cho , Ik Soo Lee , Hye-Won Lim , Young Sook Kim","doi":"10.1016/j.sbsr.2024.100640","DOIUrl":"10.1016/j.sbsr.2024.100640","url":null,"abstract":"<div><p>A biochip assay provides high-throughput and multiplexed analysis of biological samples, chemicals, and natural products. Pruritus is itchiness due to several causes, such as allergy, dry skin, pregnancy, liver disease, kidney disease, and thyroid disease. Treatment of pruritus is associated with reduced immunoglobulin (IgE) and FcεRI levels in sera. Treatment of pruritus include corticosteroid creams or ointment. However, they have side effects, so we need a safer treatment using natural products. Here, we developed an assay using protein chip technology to identify natural products with antipruritic activity that inhibit IgE-FcεRI binding. Of the 28 tested natural product extracts, Corni Fructus extract inhibited human IgE-FcεRI binding and also showed anti-histamine effects in MC/9 mast cells. These results suggest that this protein biochip assay system can be used to identify promising natural product extracts for the treatment of pruritus.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100640"},"PeriodicalIF":5.3,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000229/pdfft?md5=6c0d1e4e8883ae34b21e965d23276d41&pid=1-s2.0-S2214180424000229-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140281371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1016/j.sbsr.2024.100638
Alaa Kamal Yousif Dafhalla , Th.S. Dhahi , A. Wesam Al-Mufti , Sawsan Ali Saad , Abdulrahman Saad Alqahtani , Mudher Ali Hussein Al-nuaimi , Mohamed Elshaikh Elobaid , Tijjani Adam , Subash C.B. Gopinath
Nanogap nanowires have gained attention for their potential applications in biosensing due to their unique physical properties, such as high surface-to-volume ratios and enhanced sensitivity. These nanowires can be used as electrodes in electrochemical biosensors, improving the sensitivity and selectivity of these devices. They can also be integrated into sensor platforms using mature nano-fabrication procedures. These advancements offer great potential for developing highly sensitive and accurate biosensors for various applications, including biomedical diagnostics, environmental monitoring, and food safety. Nanogap nanowires have revolutionized the field by providing enhanced sensitivity and accuracy in detecting biological molecules. They have also been used in the fabrication of segmented nanowires for chemical sensing, allowing for more precise and targeted detection of specific analytes. Nanogap nanowires have shown promise in protein biomarker analysis, enabling ultra-sensitive detection of protein biomarkers at low levels. This review provides an overview of recent advancements in Nanogap Nanowires and their applications in biosensing.
{"title":"Nanogap nanowires and its applications in biosensing","authors":"Alaa Kamal Yousif Dafhalla , Th.S. Dhahi , A. Wesam Al-Mufti , Sawsan Ali Saad , Abdulrahman Saad Alqahtani , Mudher Ali Hussein Al-nuaimi , Mohamed Elshaikh Elobaid , Tijjani Adam , Subash C.B. Gopinath","doi":"10.1016/j.sbsr.2024.100638","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100638","url":null,"abstract":"<div><p>Nanogap nanowires have gained attention for their potential applications in biosensing due to their unique physical properties, such as high surface-to-volume ratios and enhanced sensitivity. These nanowires can be used as electrodes in electrochemical biosensors, improving the sensitivity and selectivity of these devices. They can also be integrated into sensor platforms using mature nano-fabrication procedures. These advancements offer great potential for developing highly sensitive and accurate biosensors for various applications, including biomedical diagnostics, environmental monitoring, and food safety. Nanogap nanowires have revolutionized the field by providing enhanced sensitivity and accuracy in detecting biological molecules. They have also been used in the fabrication of segmented nanowires for chemical sensing, allowing for more precise and targeted detection of specific analytes. Nanogap nanowires have shown promise in protein biomarker analysis, enabling ultra-sensitive detection of protein biomarkers at low levels. This review provides an overview of recent advancements in Nanogap Nanowires and their applications in biosensing.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100638"},"PeriodicalIF":5.3,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000205/pdfft?md5=c20707a2a4d3f5285a94cad816da1f8d&pid=1-s2.0-S2214180424000205-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140191350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1016/j.sbsr.2024.100639
Rudrarup Sengupta, Heena Khand, Gabby Sarusi
Utilizing LC resonant metamaterials (MM) for terahertz (THz) impedance spectroscopy has opened new avenues for detection of biomolecules and nanoparticles. A recent revelation highlights the pivotal role of coupling between MM resonance and Fabry-Pérot (FP) oscillations of the substrate. This interaction significantly influences the observed spectral shift (), thereby enhancing the overall sensitivity. In this work, we utilize the FP-MM optical decoupling physics for sensitivity enhancement to detect bio-particles at extremely low concentrations, thereby overcoming the particle detection limit. After implementing these innovations, we discovered that this technology can be leveraged to detect and screen patients infected with the omicron variant of SARS-CoV-2 and other lung related diseases using exhaled breath from patients. Upon achieving excellent agreement between simulations and experimental spectroscopic data, we have successfully detected and screened multiple respiratory-related diseases from the exhaled breath collected on the metasurface in a breathalyzer configuration. We obtained significant even with ultra-low concentrations of bio-particles and demarcated the ranges of for different lung diseases that do no overlap and are not constrained by any limit of detection. This work reveals new prospects for diagnosis and screening of multiple respiratory-related diseases with a single and prompt breath test.
利用低电平谐振超材料(MM)进行太赫兹(THz)阻抗光谱分析为检测生物分子和纳米粒子开辟了新途径。最近的一项发现强调了 MM 共振与基底的法布里-佩罗(Fabry-Pérot,FP)振荡之间耦合的关键作用。这种相互作用极大地影响了观测到的光谱偏移(ΔF),从而提高了整体灵敏度。在这项工作中,我们利用 FP-MM 光学解耦物理学来提高灵敏度,以检测极低浓度的生物微粒,从而克服了微粒检测极限。在实现这些创新后,我们发现这项技术可用于利用患者呼出的气体来检测和筛查感染 SARS-CoV-2 奥米克变种的患者以及其他肺部相关疾病的患者。在模拟和实验光谱数据之间取得极佳的一致性之后,我们成功地在呼吸分析仪配置中从元表面收集的呼出气体中检测和筛查出多种呼吸系统相关疾病。即使生物颗粒的浓度超低,我们也能获得明显的 ΔF,并为不同肺部疾病划定了 ΔF 范围,这些范围不会重叠,也不受任何检测极限的限制。这项工作揭示了通过单一、快速的呼气测试诊断和筛查多种呼吸系统相关疾病的新前景。
{"title":"Screening and diagnosis of respiratory diseases using metamaterial based sensitive terahertz impedance spectroscopy","authors":"Rudrarup Sengupta, Heena Khand, Gabby Sarusi","doi":"10.1016/j.sbsr.2024.100639","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100639","url":null,"abstract":"<div><p>Utilizing LC resonant metamaterials (MM) for terahertz (THz) impedance spectroscopy has opened new avenues for detection of biomolecules and nanoparticles. A recent revelation highlights the pivotal role of coupling between MM resonance and Fabry-Pérot (FP) oscillations of the substrate. This interaction significantly influences the observed spectral shift (<span><math><mi>ΔF</mi></math></span>), thereby enhancing the overall sensitivity. In this work, we utilize the FP-MM optical decoupling physics for sensitivity enhancement to detect bio-particles at extremely low concentrations, thereby overcoming the particle detection limit. After implementing these innovations, we discovered that this technology can be leveraged to detect and screen patients infected with the omicron variant of SARS-CoV-2 and other lung related diseases using exhaled breath from patients. Upon achieving excellent agreement between simulations and experimental spectroscopic data, we have successfully detected and screened multiple respiratory-related diseases from the exhaled breath collected on the metasurface in a breathalyzer configuration. We obtained significant <span><math><mi>ΔF</mi></math></span> even with ultra-low concentrations of bio-particles and demarcated the ranges of <span><math><mi>ΔF</mi></math></span> for different lung diseases that do no overlap and are not constrained by any limit of detection. This work reveals new prospects for diagnosis and screening of multiple respiratory-related diseases with a single and prompt breath test.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"44 ","pages":"Article 100639"},"PeriodicalIF":5.3,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000217/pdfft?md5=1027b970d9a8bdd3269047ef6c4122e1&pid=1-s2.0-S2214180424000217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.sbsr.2024.100629
J.D. Aguilera , D. Arranz , A. Peña , P. Marín , M.C. Horrillo , P. de la Presa , D. Matatagui
In this paper, an innovative device with gas remote-sensing capability is proposed, which is based on the interaction between magnetic nanoparticles and gases associated with exhaled breath biomarkers that can have a metabolic origin. Magnetite (Fe₃O₄) nanoparticles of around 30 nm have been used. The gas molecules adsorbed on surface modulate the magnetization of the nanoparticles and magnetostatic surface spin waves (MSSW) propagated on an yttrium iron garnet (YIG) thin film are used to detect this modulation by the induced frequency shift. The optimization of the remote gas sensor has been carried out through simulations of a magnetic model. Simulations show the feasibility of developing a high-performance remote sensor by encapsulating the nanostructures in a polytetrafluoroethylene (PTFE) tube and detecting part per million changes in their magnetization. The results show the possibility of developing new, inexpensive, reusable, contactless magnetic gas sensors employing spin waves as transductor. The developed sensor shows a high sensitivity and selectivity to concentrations as low as 50 ppm of different breath biomarkers.
{"title":"Real-time monitoring of breath biomarkers using magnonic wireless sensor based on magnetic nanoparticles","authors":"J.D. Aguilera , D. Arranz , A. Peña , P. Marín , M.C. Horrillo , P. de la Presa , D. Matatagui","doi":"10.1016/j.sbsr.2024.100629","DOIUrl":"10.1016/j.sbsr.2024.100629","url":null,"abstract":"<div><p>In this paper, an innovative device with gas remote-sensing capability is proposed, which is based on the interaction between magnetic nanoparticles and gases associated with exhaled breath biomarkers that can have a metabolic origin. Magnetite (Fe₃O₄) nanoparticles of around 30 nm have been used. The gas molecules adsorbed on surface modulate the magnetization of the nanoparticles and magnetostatic surface spin waves (MSSW) propagated on an yttrium iron garnet (YIG) thin film are used to detect this modulation by the induced frequency shift. The optimization of the remote gas sensor has been carried out through simulations of a magnetic model. Simulations show the feasibility of developing a high-performance remote sensor by encapsulating the nanostructures in a polytetrafluoroethylene (PTFE) tube and detecting part per million changes in their magnetization. The results show the possibility of developing new, inexpensive, reusable, contactless magnetic gas sensors employing spin waves as transductor. The developed sensor shows a high sensitivity and selectivity to concentrations as low as 50 ppm of different breath biomarkers.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100629"},"PeriodicalIF":5.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000114/pdfft?md5=60db8e376bfddb7b9fe62bf92822eb07&pid=1-s2.0-S2214180424000114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.sbsr.2024.100635
Mehrdad Abbasi , Ali Rasi Mahmoudi , Karim Asadpour-Zeynali
An innovative three-electrode system was developed for electrochemical analysis, aiming to overcome the limitations of conventional approaches. The system incorporates a glassy carbon rod as the working electrode, platinum wire as the counter electrode, and silver wire as the quasi-reference electrode that are positioned within an epoxy resin substrate. The advantages of this type of three-electrode system include the possibility of sample analysis in both drop mode and when immersed in the solution, low manufacturing cost, reduction of chemical consumption, no need for special maintenance protocols, no requirement for stand, absence of liquid junction potential (due to the direct contact of the reference electrode with the solution), usability for on-site analysis, and usability for non-aqueous solutions.
To check the efficiency of this electrode, cyclic voltammetry technique was used. Also, for direct comparison of PTE with conventional three-electrode system and screen-printed electrode (SPE), current density was used instead of peak current. According to the results, PTE system shows more peak current for the same surface area of the working electrode compared to other systems, which shows the high efficiency of the proposed system for electrochemical analysis. Acetaminophen (ACT) was chosen in order to investigate the ability to measure an analyte with PTE using differential pulse voltammetry (DPV). The linear range was obtained from 29.12 μM to 609.37 μM with a detection limit (LOD) 20.22 μM. Also, PTE was used to measure ACT in tablet as real sample.
{"title":"Fabrication of a polishable and reusable triple electrode as a new generation of three-electrode systems for the electrochemical analysis applications through both immersion and drop casting-procedures","authors":"Mehrdad Abbasi , Ali Rasi Mahmoudi , Karim Asadpour-Zeynali","doi":"10.1016/j.sbsr.2024.100635","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100635","url":null,"abstract":"<div><p>An innovative three-electrode system was developed for electrochemical analysis, aiming to overcome the limitations of conventional approaches. The system incorporates a glassy carbon rod as the working electrode, platinum wire as the counter electrode, and silver wire as the quasi-reference electrode that are positioned within an epoxy resin substrate. The advantages of this type of three-electrode system include the possibility of sample analysis in both drop mode and when immersed in the solution, low manufacturing cost, reduction of chemical consumption, no need for special maintenance protocols, no requirement for stand, absence of liquid junction potential (due to the direct contact of the reference electrode with the solution), usability for on-site analysis, and usability for non-aqueous solutions.</p><p>To check the efficiency of this electrode, cyclic voltammetry technique was used. Also, for direct comparison of PTE with conventional three-electrode system and screen-printed electrode (SPE), current density was used instead of peak current. According to the results, PTE system shows more peak current for the same surface area of the working electrode compared to other systems, which shows the high efficiency of the proposed system for electrochemical analysis. Acetaminophen (ACT) was chosen in order to investigate the ability to measure an analyte with PTE using differential pulse voltammetry (DPV). The linear range was obtained from 29.12 μM to 609.37 μM with a detection limit (LOD) 20.22 μM. Also, PTE was used to measure ACT in tablet as real sample.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100635"},"PeriodicalIF":5.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000175/pdfft?md5=c7a40efc2b56536bbc1311380d4898e8&pid=1-s2.0-S2214180424000175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140014470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.sbsr.2024.100622
Thuanny Borba Rios , Mariana Rocha Maximiano , Gabriel Cidade Feitosa , Martin Malmsten , Octávio Luiz Franco
Infectious diseases in farm animals triggered by pathogenic microorganisms affect the health and well-being of livestock and human populations. Pathogen detection is an important step for the successful diagnosis, treatment and control of infectious diseases in animals. Pathogens that persist in the poultry and livestock industries can be responsible for more than 70% of emerging infections. Thus, rapid diagnostic tools are extremely important. In recent years, nanotechnology has emerged as a great opportunity to tackle this challenge and to develop fast, accurate and economical diagnostics for the detection of pathogens. Various nanostructures, due to the presence of unique characteristics shown in nanomaterials, have already been applied in biodiagnostics to detect specific molecular targets, including pathogen detection. In this context, this review focuses on the application, role and challenges of nanosensors in detecting disease-causing pathogens in agriculture. Several nanostructures are investigated for their utility in providing innovative solutions for pathogen detection in farm animals. This comprehensive examination seeks to unravel the intricate nanosensors landscape, shedding some light on their role in advancing diagnostic capabilities within the agricultural domain. By elucidating the challenges inherent in their application, the review contributes to the ongoing discourse on harnessing nanotechnology for the detection and management of infectious diseases in livestock, ultimately paving the way for developments in veterinary diagnostics.
{"title":"Nanosensors for animal infectious disease detection","authors":"Thuanny Borba Rios , Mariana Rocha Maximiano , Gabriel Cidade Feitosa , Martin Malmsten , Octávio Luiz Franco","doi":"10.1016/j.sbsr.2024.100622","DOIUrl":"10.1016/j.sbsr.2024.100622","url":null,"abstract":"<div><p>Infectious diseases in farm animals triggered by pathogenic microorganisms affect the health and well-being of livestock and human populations. Pathogen detection is an important step for the successful diagnosis, treatment and control of infectious diseases in animals. Pathogens that persist in the poultry and livestock industries can be responsible for more than 70% of emerging infections. Thus, rapid diagnostic tools are extremely important. In recent years, nanotechnology has emerged as a great opportunity to tackle this challenge and to develop fast, accurate and economical diagnostics for the detection of pathogens. Various nanostructures, due to the presence of unique characteristics shown in nanomaterials, have already been applied in biodiagnostics to detect specific molecular targets, including pathogen detection. In this context, this review focuses on the application, role and challenges of nanosensors in detecting disease-causing pathogens in agriculture. Several nanostructures are investigated for their utility in providing innovative solutions for pathogen detection in farm animals. This comprehensive examination seeks to unravel the intricate nanosensors landscape, shedding some light on their role in advancing diagnostic capabilities within the agricultural domain. By elucidating the challenges inherent in their application, the review contributes to the ongoing discourse on harnessing nanotechnology for the detection and management of infectious diseases in livestock, ultimately paving the way for developments in veterinary diagnostics.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100622"},"PeriodicalIF":5.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000047/pdfft?md5=e08ecf7d71dc02a08aaab7f342e2e26b&pid=1-s2.0-S2214180424000047-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139679307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The technology of surface plasmon resonance (SPR) is widely recognized and valued for its ability to rapidly and sensitively investigate biomolecular interactivities in real-time. Herein, we numerically investigate the collective influence of metal/ transition metal dichalcogenide (TMDC)/halide perovskite (HP)/2D carbon (C) and phosphorus (P) allotropes on the functionality of an SPR biosensor deploying Kretschmann configuration. The incident light wavelength is held constant at 633 nm, and radiative properties of the hybrid structure are determined using the attenuated total reflection and transfer matrix techniques. Crucial performance metrics such as quality factor (QF), figure of merit (FoM), sensitivity, and detection accuracy are calculated. The comparison is conducted and evaluated against the current literature using performance outcomes in terms of several prisms such as BK7, BAK1, BAF10, SF5, SF10, SF11, 2S2G, CaF2, and CsF, several TMDCs such as WS2, MoS2, WSe2, MoSe2, and PtSe2, several HPs such as CsPbI3, KSnI3, CsSnI3, and FASnI3, and 2D C/P allotropes such as Graphene, MXene, Black phosphorene (BP), and Blue phosphorene (BlueP) in order to search optimum parameters, and then we implement the best one in each layer of this biosensor design. It is noticed that the SPR heterostructure based on BAK1 prism, plasmonic metal Ag, tungsten disulfide (WS2) TMDC, formamidinium tin iodide (FASnI3) HP and 2D BP exhibits outstanding performance with regard to sensor performance characteristics. The observed FoM and sensitivity are 48.2/RIU and 402°/RIU, respectively. The investigation of the electric field distribution within this biosensor along the normal to the interface is also conducted using the finite difference time domain (FDTD) approach to demonstrate the unique contribution of FASnI3. The findings presented in this study are anticipated to play a key role in the improvement of plasmonic resonance-based biosensing domains like DNA hybridization or formalin detection by employing halide perovskite as an additional layer in SPR biosensors.
{"title":"Numerical investigation into impact of halide perovskite material on the optical performance of prism-loaded hybrid surface plasmon resonance biosensor: A strategy to increase sensitivity","authors":"Sourav Roy , Nibir Mondol , Diponkar Kundu , Anisha Anjum Meem , Md. Rasidul Islam , Md. Amzad Hossain , Md. Biplob Hossain","doi":"10.1016/j.sbsr.2024.100630","DOIUrl":"https://doi.org/10.1016/j.sbsr.2024.100630","url":null,"abstract":"<div><p>The technology of surface plasmon resonance (SPR) is widely recognized and valued for its ability to rapidly and sensitively investigate biomolecular interactivities in real-time. Herein, we numerically investigate the collective influence of metal/ transition metal dichalcogenide (TMDC)/halide perovskite (HP)/2D carbon (C) and phosphorus (P) allotropes on the functionality of an SPR biosensor deploying Kretschmann configuration. The incident light wavelength is held constant at 633 nm, and radiative properties of the hybrid structure are determined using the attenuated total reflection and transfer matrix techniques. Crucial performance metrics such as quality factor (QF), figure of merit (FoM), sensitivity, and detection accuracy are calculated. The comparison is conducted and evaluated against the current literature using performance outcomes in terms of several prisms such as BK7, BAK1, BAF10, SF5, SF10, SF11, 2S2G, CaF<sub>2</sub>, and CsF, several TMDCs such as WS<sub>2</sub>, MoS<sub>2</sub>, WSe<sub>2</sub>, MoSe<sub>2</sub>, and PtSe<sub>2</sub>, several HPs such as CsPbI<sub>3</sub>, KSnI<sub>3</sub>, CsSnI<sub>3</sub>, and FASnI<sub>3</sub>, and 2D C/P allotropes such as Graphene, MXene, Black phosphorene (BP), and Blue phosphorene (BlueP) in order to search optimum parameters, and then we implement the best one in each layer of this biosensor design. It is noticed that the SPR heterostructure based on BAK1 prism, plasmonic metal Ag, tungsten disulfide (WS<sub>2</sub>) TMDC, formamidinium tin iodide (FASnI<sub>3</sub>) HP and 2D BP exhibits outstanding performance with regard to sensor performance characteristics. The observed FoM and sensitivity are 48.2/RIU and 402°/RIU, respectively. The investigation of the electric field distribution within this biosensor along the normal to the interface is also conducted using the finite difference time domain (FDTD) approach to demonstrate the unique contribution of FASnI<sub>3</sub>. The findings presented in this study are anticipated to play a key role in the improvement of plasmonic resonance-based biosensing domains like DNA hybridization or formalin detection by employing halide perovskite as an additional layer in SPR biosensors.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"43 ","pages":"Article 100630"},"PeriodicalIF":5.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000126/pdfft?md5=6507c07644f71f6f9457c13e30b5d0be&pid=1-s2.0-S2214180424000126-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139914983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}