CONTEXT
As part of sustainable crop intensification, multiple cropping has emerged as a promising solution for enhancing agricultural productivity without expanding cropland. Although existing studies have explored conditions required for multiple cropping adoption, a comprehensive, global assessment of the potential for transition from single to multiple cropping remains lacking.
OBJECTIVE
This study aims to i) identify the most influential determinants affecting global cropping systems from biophysical, agricultural input-related, and socio-economic perspectives; ii) quantify their associations with single versus multiple cropping at 30 arc-min resolution; and iii) assess the potential for adopting multiple cropping on cropland currently under single cropping for maize, wheat, rice, and soybean.
METHODS
We employed eXtreme Gradient Boosting (XGBoost) to quantify relationships between cropping systems and global variables, including climate, water, environment, agriculture, and socio-economics with consistent temporal coverage (1998–2002). To delineate potential transition zones, we applied K-means clustering to these variable groups across four crops, comparing the similarities and differences in growing conditions in single and multiple cropping systems.
RESULTS AND CONCLUSIONS
Climate variations and agricultural inputs are the most important sets of variables shaping multiple cropping potential. Single cropping systems on 80 million hectares (8 % of global single-cropped land) could transition to multiple cropping across the four crops. Transition potential is, on average, 35 % higher in irrigated systems than in rainfed systems, and the area suitable for transition is 1.7 times larger in irrigated systems. These areas are concentrated in North America, Southeast Asia, and Southern Europe.
SIGNIFICANCE
Our findings highlight both promising targets for sustainable intensification and critical data gaps under current climatic conditions, thereby helping to prioritize regions for subsequent, site-specific analysis and targeted interventions toward sustainable food systems under a changing climate.
扫码关注我们
求助内容:
应助结果提醒方式:
