首页 > 最新文献

物理与天体物理最新文献

英文 中文
IF:
Optimizing Effective Labeling Efficiency in MINFLUX 3D DNA-PAINT Microscopy by Maximizing Marker Detection Probability 通过最大化标记检测概率,优化MINFLUX 3D DNA-PAINT显微镜的有效标记效率
IF 7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1021/acsphotonics.5c01253
Christian Soeller, Alexandre F. E. Bokhobza, Javier Casares-Arias, Alexander H. Clowsley
MINFLUX is a powerful single-molecule approach capable of achieving high spatially isotropic resolution in three dimensions. Current implementations collect localizations strictly serially, but criteria for when to terminate acquisition are often unclear. We therefore systematically investigate the time course of effective labeling efficiency (ELE) and achievable saturation values in MINFLUX 3D DNA-PAINT microscopy of Nup96 proteins in a U-2 OS-Nup96-mEGFP modified cell line using a commercial MINFLUX microscope. ELE was measured using a quantitative procedure based on maximum-likelihood template fitting. We collected data measured over various scan sizes and achieved ELE values of ∼60% after passing a time interval dependent on the region size, typically requiring long-duration acquisitions over several hours. Our data and a simple model suggest that maximizing marker detection is key to achieving the limits set by chemical labeling efficiency. A factor limiting the marker detection probability when using conventional DNA-PAINT markers is docking strand site-loss, observed over the duration required to build up the image data of MINFLUX acquisitions, which also limits the achievable number of labeling site visits to values around 1–3. Using repeat DNA-PAINT, i.e., employing oligonucleotide sequences with repeated docking sites, we observed greatly reduced site-loss and could increase the number of individual visits to site locations by more than 3-fold over the same period. Additionally, this enabled increasing stringency criteria for labeling (i.e., higher threshold values) and maximizing marker detection probabilities so that ELE reaches the limits set by chemical labeling efficiency.
MINFLUX是一种强大的单分子方法,能够在三维空间中实现高空间各向同性分辨率。当前的实现严格按顺序收集定位信息,但何时终止获取的标准往往不明确。因此,我们使用商用MINFLUX显微镜系统地研究了在U-2 OS-Nup96-mEGFP修饰细胞系中,在MINFLUX 3D DNA-PAINT显微镜下Nup96蛋白的有效标记效率(ELE)和可达到的饱和值的时间过程。使用基于最大似然模板拟合的定量程序测量ELE。我们收集了在各种扫描尺寸上测量的数据,并在通过依赖于区域大小的时间间隔后获得了约60%的ELE值,通常需要几个小时的长时间采集。我们的数据和一个简单的模型表明,最大化标记物检测是实现化学标记效率限制的关键。在使用传统DNA-PAINT标记时,限制标记检测概率的一个因素是对接链位点丢失,这是在建立MINFLUX获取的图像数据所需的持续时间内观察到的,这也限制了标记站点访问的可实现次数在1-3左右。使用重复DNA-PAINT,即使用具有重复对接位点的寡核苷酸序列,我们观察到大大减少了位点丢失,并且可以在同一时期将个体访问位点的次数增加3倍以上。此外,这增加了标记的严格标准(即更高的阈值)和最大化标记物检测概率,使ELE达到化学标记效率设定的极限。
{"title":"Optimizing Effective Labeling Efficiency in MINFLUX 3D DNA-PAINT Microscopy by Maximizing Marker Detection Probability","authors":"Christian Soeller, Alexandre F. E. Bokhobza, Javier Casares-Arias, Alexander H. Clowsley","doi":"10.1021/acsphotonics.5c01253","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c01253","url":null,"abstract":"MINFLUX is a powerful single-molecule approach capable of achieving high spatially isotropic resolution in three dimensions. Current implementations collect localizations strictly serially, but criteria for when to terminate acquisition are often unclear. We therefore systematically investigate the time course of effective labeling efficiency (ELE) and achievable saturation values in MINFLUX 3D DNA-PAINT microscopy of Nup96 proteins in a U-2 OS-Nup96-mEGFP modified cell line using a commercial MINFLUX microscope. ELE was measured using a quantitative procedure based on maximum-likelihood template fitting. We collected data measured over various scan sizes and achieved ELE values of ∼60% after passing a time interval dependent on the region size, typically requiring long-duration acquisitions over several hours. Our data and a simple model suggest that maximizing marker detection is key to achieving the limits set by chemical labeling efficiency. A factor limiting the marker detection probability when using conventional DNA-PAINT markers is docking strand site-loss, observed over the duration required to build up the image data of MINFLUX acquisitions, which also limits the achievable number of labeling site visits to values around 1–3. Using repeat DNA-PAINT, i.e., employing oligonucleotide sequences with repeated docking sites, we observed greatly reduced site-loss and could increase the number of individual visits to site locations by more than 3-fold over the same period. Additionally, this enabled increasing stringency criteria for labeling (i.e., higher threshold values) and maximizing marker detection probabilities so that ELE reaches the limits set by chemical labeling efficiency.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"7 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145786329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Spiral Pattern Speed in the Milky Way Galaxy 银河系的螺旋形速度
IF 0.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-19 DOI: 10.1134/S1063773725700422
V. V. Bobylev, A. T. Bajkova, A. A. Smirnov

Based on a sample of masers, we have solved the basic kinematic equations with the inclusion of the Galactic rotation parameters and the peculiar solar velocity as the sought-for unknowns. Based on a spectral analysis, we have obtained the following estimates: (|f|_{R,theta}=(7.0,5.1)pm(1.2,1.4)) km s({}^{-1}), the corresponding wavelengths (lambda_{R,theta}=(1.9,1.7)pm(0.4,0.7)) kpc, and (chi_{odot}={-}140^{circ}pm 15^{circ}). We have confirmed the presence of periodic perturbations in the vertical maser velocities with an amplitude (|f|_{W}=3.1pm 1.4) km s({}^{-1}) and a wavelength (lambda=1.9pm 0.8) kpc. We show that the velocity perturbations (f_{R}) and (f_{theta}) can have both the same and opposite signs. Therefore, we have obtained a large spread of estimates. For example, if (f_{R}) and (f_{theta}) have the same signs, then (Omega_{p}=25.8pm 2.0) km s({}^{-1}) kpc({}^{-1}) and (R_{textrm{cor}}=9.1pm 0.8) kpc, while if (f_{R}) and (f_{theta}) have opposite signs, then (Omega_{p}=35.4pm 2.0) km s({}^{-1}) kpc({}^{-1}) and (R_{textrm{cor}}=6.8pm 0.8) kpc.

在一个脉泽样本的基础上,我们求解了包含银河系旋转参数和特殊太阳速度的基本运动学方程,作为寻找的未知数。根据光谱分析,我们得到了以下估计:(|f|_{R,theta}=(7.0,5.1)pm(1.2,1.4)) km s ({}^{-1}),对应的波长(lambda_{R,theta}=(1.9,1.7)pm(0.4,0.7)) kpc和(chi_{odot}={-}140^{circ}pm 15^{circ})。我们已经证实在垂直脉泽速度中存在周期性扰动,其振幅为(|f|_{W}=3.1pm 1.4) km s ({}^{-1}),波长为(lambda=1.9pm 0.8) kpc。我们证明了速度摄动(f_{R})和(f_{theta})可以同时具有相同和相反的符号。因此,我们得到了一个很大的估计范围。例如,(f_{R})和(f_{theta})有相同的符号,则(Omega_{p}=25.8pm 2.0) km为({}^{-1}) kpc ({}^{-1})和(R_{textrm{cor}}=9.1pm 0.8) kpc,而(f_{R})和(f_{theta})有相反的符号,则(Omega_{p}=35.4pm 2.0) km为({}^{-1}) kpc ({}^{-1})和(R_{textrm{cor}}=6.8pm 0.8) kpc。
{"title":"The Spiral Pattern Speed in the Milky Way Galaxy","authors":"V. V. Bobylev,&nbsp;A. T. Bajkova,&nbsp;A. A. Smirnov","doi":"10.1134/S1063773725700422","DOIUrl":"10.1134/S1063773725700422","url":null,"abstract":"<p>Based on a sample of masers, we have solved the basic kinematic equations with the inclusion of the Galactic rotation parameters and the peculiar solar velocity as the sought-for unknowns. Based on a spectral analysis, we have obtained the following estimates: <span>(|f|_{R,theta}=(7.0,5.1)pm(1.2,1.4))</span> km s<span>({}^{-1})</span>, the corresponding wavelengths <span>(lambda_{R,theta}=(1.9,1.7)pm(0.4,0.7))</span> kpc, and <span>(chi_{odot}={-}140^{circ}pm 15^{circ})</span>. We have confirmed the presence of periodic perturbations in the vertical maser velocities with an amplitude <span>(|f|_{W}=3.1pm 1.4)</span> km s<span>({}^{-1})</span> and a wavelength <span>(lambda=1.9pm 0.8)</span> kpc. We show that the velocity perturbations <span>(f_{R})</span> and <span>(f_{theta})</span> can have both the same and opposite signs. Therefore, we have obtained a large spread of estimates. For example, if <span>(f_{R})</span> and <span>(f_{theta})</span> have the same signs, then <span>(Omega_{p}=25.8pm 2.0)</span> km s<span>({}^{-1})</span> kpc<span>({}^{-1})</span> and <span>(R_{textrm{cor}}=9.1pm 0.8)</span> kpc, while if <span>(f_{R})</span> and <span>(f_{theta})</span> have opposite signs, then <span>(Omega_{p}=35.4pm 2.0)</span> km s<span>({}^{-1})</span> kpc<span>({}^{-1})</span> and <span>(R_{textrm{cor}}=6.8pm 0.8)</span> kpc.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"51 5","pages":"278 - 286"},"PeriodicalIF":0.8,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145779209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for a dark baryon in the Ξ − → π − + i n v i s i b l e decay 在Ξ−→π−+ i中寻找暗物质重子
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-19 DOI: 10.1016/j.physletb.2025.140099
M. Ablikim, M.N. Achasov, P. Adlarson, X.C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, M.H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, X.Y. Chai, J.F. Chang, G.R. Che, Y.Z. Che, C.H. Chen, Chao Chen, G. Chen, H.S. Chen, H.Y. Chen, M.L. Chen, S.J. Chen, S.L. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, X.Y. Chen, Y.B. Chen, Y.Q. Chen, Z. Chen, Z.J. Chen, Z.K. Chen, S.K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. Cottee-Meldrum, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. De Boer, D. Dedovich, C.Q. Deng, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X.X. Ding, Y. Ding, Y. Ding, Y.X. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, M.C. Du, S.X. Du, S.X. Du, Y.Y. Duan, P. Egorov, G.F. Fan, J.J. Fan, Y.H. Fan, J. Fang, J. Fang, S.S. Fang, W.X. Fang, Y.Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, L. Feng, Q.X. Feng, Y.T. Feng, M. Fritsch, C.D. Fu, J.L. Fu, Y.W. Fu, H. Gao, X.B. Gao, Y. Gao, Y.N. Gao, Y.N. Gao, Y.Y. Gao, S. Garbolino, I. Garzia, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, J.D. Gong, L. Gong, W.X. Gong, W. Gradl, S. Gramigna, M. Greco, M.H. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, M.J. Guo, R.P. Guo, Y.P. Guo, A. Guskov, J. Gutierrez, K.L. Han, T.T. Han, F. Hanisch, K.D. Hao, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, P.C. Hong, G.Y. Hou, X.T. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, Q.P. Hu, S.L. Hu, T. Hu, Y. Hu, Z.M. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, P. Huang, X.T. Huang, Y.P. Huang, Y.S. Huang, T. Hussain, N. Hüsken, N. In Der Wiesche, J. Jackson, Q. Ji, Q.P. Ji, W. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, Z.K. Jia, D. Jiang, H.B. Jiang, P.C. Jiang, S.J. Jiang, T.J. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, J.K. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, X.M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O.B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W.N. Lan, T.T. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. Li, C.H. Li, C.K. Li, D.M. Li, F. Li, G. Li, H.B. Li, H.J. Li, H.N. Li, Hui Li, J.R. Li, J.S. Li, K. Li, K.L. Li, L.J. Li, Lei Li, M.H. Li, M.R. Li, P.L. Li, P.R. Li, Q.M. Li, Q.X. Li, R. Li, S.X. Li, T. Li, T.Y. Li, W.D. Li, W.G. Li, X. Li, X.H. Li, X.L. Li, X.Y. Li, X.Z. Li, Y. Li, Y.G. Li, Y.P. Li, Z.J. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.B. Liao, M.H. Liao, Y.P. Liao, J. Libby, A. Limphirat, C.C. Lin, D.X. Lin, L.Q. Lin, T. Lin, B.J. Liu, B.X. Liu, C. Liu, C.X. Liu, F. Liu, F.H. Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.H. Liu, H.M. Liu, Huihui Liu, J.B. Liu, J.J. Liu, K. Liu, K. Liu, K.Y. Liu, Ke Liu, L.C. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, W.T. Liu, X. Liu, X. Liu, X.K. Liu, X.Y. Liu, Y. Liu, Y. Liu, Yuan Liu, Y.B. Liu, Z.A. Liu, Z.D. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.H. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, J.R. Luo, J.S. Luo, M.X. Luo, T. Luo, X.L. Luo, Z.Y. Lv, X.R. Lyu, Y.F. Lyu, Y.H. Lyu, F.C. Ma, H.L. Ma, J.L. Ma, L.L. Ma, L.R. Ma, Q.M. Ma, R.Q. Ma, R.Y. Ma, T. Ma, X.T. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, I. Mackay, M. Maggiora, S. Malde, Q.A. Malik, H.X. Mao, Y.J. Mao, Z.P. Mao, S. Marcello, A. Marshall, F.M. Melendi, Y.H. Meng, Z.X. Meng, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, B. Moses, N. Yu Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L.S. Nie, I.B. Nikolaev, Z. Ning, S. Nisar, Q.L. Niu, W.D. Niu, C. Normand, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y.P. Pei, M. Pelizaeus, H.P. Peng, X.J. Peng, Y.Y. Peng, K. Peters, K. Petridis, J.L. Ping, R.G. Ping, S. Plura, V. Prasad, F.Z. Qi, H.R. Qi, M. Qi, S. Qian, W.B. Qian, C.F. Qiao, J.H. Qiao, J.J. Qin, J.L. Qin, L.Q. Qin, L.Y. Qin, P.B. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, Z.H. Qu, J. Rademacker, C.F. Redmer, A. Rivetti, M. Rolo, G. Rong, S.S. Rong, F. Rosini, Ch Rosner, M.Q. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, Z.J. Shang, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, W.H. Shen, X.Y. Shen, B.A. Shi, H. Shi, J.L. Shi, J.Y. Shi, S.Y. Shi, X. Shi, H.L. Song, J.J. Song, T.Z. Song, W.M. Song, Y.J. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, S.S. Su, Y.J. Su, G.B. Sun, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, K. Sun, L. Sun, S.S. Sun, T. Sun, Y.C. Sun, Y.H. Sun, Y.J. Sun, Y.Z. Sun, Z.Q. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, J. Tang, J.J. Tang, L.F. Tang, Y.A. Tang, L.Y. Tao, M. Tat, J.X. Teng, J.Y. Tian, W.H. Tian, Y. Tian, Z.F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, C. Wang, Cong Wang, D.Y. Wang, H.J. Wang, J.J. Wang, K. Wang, L.L. Wang, L.W. Wang, M. Wang, M. Wang, N.Y. Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, Wei Wang, W.P. Wang, X. Wang, X.F. Wang, X.J. Wang, X.L. Wang, X.N. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.H. Wang, Y.J. Wang, Y.L. Wang, Y.N. Wang, Y.Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z.L. Wang, Z.Q. Wang, Z.Y. Wang, D.H. Wei, H.R. Wei, F. Weidner, S.P. Wen, Y.R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J.F. Wu, L.H. Wu, L.J. Wu, Lianjie Wu, S.G. Wu, S.M. Wu, X. Wu, X.H. Wu, Y.J. Wu, Z. Wu, L. Xia, X.M. Xian, B.H. Xiang, D. Xiao, G.Y. Xiao, H. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, K.J. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, M. Xu, Q.J. Xu, Q.N. Xu, T.D. Xu, W. Xu, W.L. Xu, X.P. Xu, Y. Xu, Y.C. Xu, Z.S. Xu, F. Yan, H.Y. Yan, L. Yan, W.B. Yan, W.C. Yan, W.H. Yan, W.P. Yan, X.Q. Yan, H.J. Yang, H.L. Yang, H.X. Yang, J.H. Yang, R.J. Yang, T. Yang, Y. Yang, Y.F. Yang, Y.H. Yang, Y.Q. Yang, Y.X. Yang, Y.Z. Yang, M. Ye, M.H. Ye, Z.J. Ye, Junhao Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, L.Q. Yu, M.C. Yu, T. Yu, X.D. Yu, Y.C. Yu, C.Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S.C. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, Ying Yue, A.A. Zafar, S.H. Zeng, X. Zeng, Y. Zeng, Yujie Zeng, Y.J. Zeng, X.Y. Zhai, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, G.Y. Zhang, H. Zhang, H. Zhang, H.C. Zhang, H.H. Zhang, H.Q. Zhang, H.R. Zhang, H.Y. Zhang, Jin Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.S. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, L.M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q.Y. Zhang, R.Y. Zhang, S.H. Zhang, Shulei Zhang, X.M. Zhang, X.Y. Zhang, X.Y. Zhang, Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Y.M. Zhang, Y.P. Zhang, Z.D. Zhang, Z.H. Zhang, Z.L. Zhang, Z.L. Zhang, Z.X. Zhang, Z.Y. Zhang, Z.Y. Zhang, Z.Z. Zhang, Z.Z. Zhang, G. Zhao, J.Y. Zhao, J.Z. Zhao, L. Zhao, L. Zhao, M.G. Zhao, N. Zhao, R.P. Zhao, S.J. Zhao, Y.B. Zhao, Y.L. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, B.M. Zheng, J.P. Zheng, W.J. Zheng, X.R. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, H. Zhou, J.Q. Zhou, J.Y. Zhou, S. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.X. Zhou, Y.Z. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, K.S. Zhu, L. Zhu, L.X. Zhu, S.H. Zhu, T.J. Zhu, W.D. Zhu, W.J. Zhu, W.Z. Zhu, Y.C. Zhu, Z.A. Zhu, X.Y. Zhuang, J.H. Zou, J. Zu
{"title":"Search for a dark baryon in the Ξ − → π − + i n v i s i b l e decay","authors":"M. Ablikim, M.N. Achasov, P. Adlarson, X.C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, Y. Ban, H.-R Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R.A. Briere, A. Brueggemann, H. Cai, M.H. Cai, X. Cai, A. Calcaterra, G.F. Cao, N. Cao, S.A. Cetin, X.Y. Chai, J.F. Chang, G.R. Che, Y.Z. Che, C.H. Chen, Chao Chen, G. Chen, H.S. Chen, H.Y. Chen, M.L. Chen, S.J. Chen, S.L. Chen, S.M. Chen, T. Chen, X.R. Chen, X.T. Chen, X.Y. Chen, Y.B. Chen, Y.Q. Chen, Z. Chen, Z.J. Chen, Z.K. Chen, S.K. Choi, X. Chu, G. Cibinetto, F. Cossio, J. Cottee-Meldrum, J.J. Cui, H.L. Dai, J.P. Dai, A. Dbeyssi, R.E. De Boer, D. Dedovich, C.Q. Deng, Z.Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X.X. Ding, Y. Ding, Y. Ding, Y.X. Ding, J. Dong, L.Y. Dong, M.Y. Dong, X. Dong, M.C. Du, S.X. Du, S.X. Du, Y.Y. Duan, P. Egorov, G.F. Fan, J.J. Fan, Y.H. Fan, J. Fang, J. Fang, S.S. Fang, W.X. Fang, Y.Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C.Q. Feng, J.H. Feng, L. Feng, Q.X. Feng, Y.T. Feng, M. Fritsch, C.D. Fu, J.L. Fu, Y.W. Fu, H. Gao, X.B. Gao, Y. Gao, Y.N. Gao, Y.N. Gao, Y.Y. Gao, S. Garbolino, I. Garzia, P.T. Ge, Z.W. Ge, C. Geng, E.M. Gersabeck, A. Gilman, K. Goetzen, J.D. Gong, L. Gong, W.X. Gong, W. Gradl, S. Gramigna, M. Greco, M.H. Gu, Y.T. Gu, C.Y. Guan, A.Q. Guo, L.B. Guo, M.J. Guo, R.P. Guo, Y.P. Guo, A. Guskov, J. Gutierrez, K.L. Han, T.T. Han, F. Hanisch, K.D. Hao, X.Q. Hao, F.A. Harris, K.K. He, K.L. He, F.H. Heinsius, C.H. Heinz, Y.K. Heng, C. Herold, P.C. Hong, G.Y. Hou, X.T. Hou, Y.R. Hou, Z.L. Hou, H.M. Hu, J.F. Hu, Q.P. Hu, S.L. Hu, T. Hu, Y. Hu, Z.M. Hu, G.S. Huang, K.X. Huang, L.Q. Huang, P. Huang, X.T. Huang, Y.P. Huang, Y.S. Huang, T. Hussain, N. Hüsken, N. In Der Wiesche, J. Jackson, Q. Ji, Q.P. Ji, W. Ji, X.B. Ji, X.L. Ji, Y.Y. Ji, Z.K. Jia, D. Jiang, H.B. Jiang, P.C. Jiang, S.J. Jiang, T.J. Jiang, X.S. Jiang, Y. Jiang, J.B. Jiao, J.K. Jiao, Z. Jiao, S. Jin, Y. Jin, M.Q. Jing, X.M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X.L. Kang, X.S. Kang, M. Kavatsyuk, B.C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O.B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, Q. Lan, W.N. Lan, T.T. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. Li, C.H. Li, C.K. Li, D.M. Li, F. Li, G. Li, H.B. Li, H.J. Li, H.N. Li, Hui Li, J.R. Li, J.S. Li, K. Li, K.L. Li, L.J. Li, Lei Li, M.H. Li, M.R. Li, P.L. Li, P.R. Li, Q.M. Li, Q.X. Li, R. Li, S.X. Li, T. Li, T.Y. Li, W.D. Li, W.G. Li, X. Li, X.H. Li, X.L. Li, X.Y. Li, X.Z. Li, Y. Li, Y.G. Li, Y.P. Li, Z.J. Li, Z.Y. Li, H. Liang, Y.F. Liang, Y.T. Liang, G.R. Liao, L.B. Liao, M.H. Liao, Y.P. Liao, J. Libby, A. Limphirat, C.C. Lin, D.X. Lin, L.Q. Lin, T. Lin, B.J. Liu, B.X. Liu, C. Liu, C.X. Liu, F. Liu, F.H. Liu, Feng Liu, G.M. Liu, H. Liu, H.B. Liu, H.H. Liu, H.M. Liu, Huihui Liu, J.B. Liu, J.J. Liu, K. Liu, K. Liu, K.Y. Liu, Ke Liu, L.C. Liu, Lu Liu, M.H. Liu, P.L. Liu, Q. Liu, S.B. Liu, T. Liu, W.K. Liu, W.M. Liu, W.T. Liu, X. Liu, X. Liu, X.K. Liu, X.Y. Liu, Y. Liu, Y. Liu, Yuan Liu, Y.B. Liu, Z.A. Liu, Z.D. Liu, Z.Q. Liu, X.C. Lou, F.X. Lu, H.J. Lu, J.G. Lu, X.L. Lu, Y. Lu, Y.H. Lu, Y.P. Lu, Z.H. Lu, C.L. Luo, J.R. Luo, J.S. Luo, M.X. Luo, T. Luo, X.L. Luo, Z.Y. Lv, X.R. Lyu, Y.F. Lyu, Y.H. Lyu, F.C. Ma, H.L. Ma, J.L. Ma, L.L. Ma, L.R. Ma, Q.M. Ma, R.Q. Ma, R.Y. Ma, T. Ma, X.T. Ma, X.Y. Ma, Y.M. Ma, F.E. Maas, I. Mackay, M. Maggiora, S. Malde, Q.A. Malik, H.X. Mao, Y.J. Mao, Z.P. Mao, S. Marcello, A. Marshall, F.M. Melendi, Y.H. Meng, Z.X. Meng, G. Mezzadri, H. Miao, T.J. Min, R.E. Mitchell, X.H. Mo, B. Moses, N. Yu Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L.S. Nie, I.B. Nikolaev, Z. Ning, S. Nisar, Q.L. Niu, W.D. Niu, C. Normand, S.L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y.P. Pei, M. Pelizaeus, H.P. Peng, X.J. Peng, Y.Y. Peng, K. Peters, K. Petridis, J.L. Ping, R.G. Ping, S. Plura, V. Prasad, F.Z. Qi, H.R. Qi, M. Qi, S. Qian, W.B. Qian, C.F. Qiao, J.H. Qiao, J.J. Qin, J.L. Qin, L.Q. Qin, L.Y. Qin, P.B. Qin, X.P. Qin, X.S. Qin, Z.H. Qin, J.F. Qiu, Z.H. Qu, J. Rademacker, C.F. Redmer, A. Rivetti, M. Rolo, G. Rong, S.S. Rong, F. Rosini, Ch Rosner, M.Q. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K.Y. Shan, W. Shan, X.Y. Shan, Z.J. Shang, J.F. Shangguan, L.G. Shao, M. Shao, C.P. Shen, H.F. Shen, W.H. Shen, X.Y. Shen, B.A. Shi, H. Shi, J.L. Shi, J.Y. Shi, S.Y. Shi, X. Shi, H.L. Song, J.J. Song, T.Z. Song, W.M. Song, Y.J. Song, Y.X. Song, S. Sosio, S. Spataro, F. Stieler, S.S. Su, Y.J. Su, G.B. Sun, G.X. Sun, H. Sun, H.K. Sun, J.F. Sun, K. Sun, L. Sun, S.S. Sun, T. Sun, Y.C. Sun, Y.H. Sun, Y.J. Sun, Y.Z. Sun, Z.Q. Sun, Z.T. Sun, C.J. Tang, G.Y. Tang, J. Tang, J.J. Tang, L.F. Tang, Y.A. Tang, L.Y. Tao, M. Tat, J.X. Teng, J.Y. Tian, W.H. Tian, Y. Tian, Z.F. Tian, I. Uman, B. Wang, B. Wang, Bo Wang, C. Wang, C. Wang, Cong Wang, D.Y. Wang, H.J. Wang, J.J. Wang, K. Wang, L.L. Wang, L.W. Wang, M. Wang, M. Wang, N.Y. Wang, S. Wang, T. Wang, T.J. Wang, W. Wang, Wei Wang, W.P. Wang, X. Wang, X.F. Wang, X.J. Wang, X.L. Wang, X.N. Wang, Y. Wang, Y.D. Wang, Y.F. Wang, Y.H. Wang, Y.J. Wang, Y.L. Wang, Y.N. Wang, Y.Q. Wang, Yaqian Wang, Yi Wang, Yuan Wang, Z. Wang, Z.L. Wang, Z.Q. Wang, Z.Y. Wang, D.H. Wei, H.R. Wei, F. Weidner, S.P. Wen, Y.R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, C. Wu, J.F. Wu, L.H. Wu, L.J. Wu, Lianjie Wu, S.G. Wu, S.M. Wu, X. Wu, X.H. Wu, Y.J. Wu, Z. Wu, L. Xia, X.M. Xian, B.H. Xiang, D. Xiao, G.Y. Xiao, H. Xiao, Y.L. Xiao, Z.J. Xiao, C. Xie, K.J. Xie, X.H. Xie, Y. Xie, Y.G. Xie, Y.H. Xie, Z.P. Xie, T.Y. Xing, C.F. Xu, C.J. Xu, G.F. Xu, H.Y. Xu, M. Xu, Q.J. Xu, Q.N. Xu, T.D. Xu, W. Xu, W.L. Xu, X.P. Xu, Y. Xu, Y.C. Xu, Z.S. Xu, F. Yan, H.Y. Yan, L. Yan, W.B. Yan, W.C. Yan, W.H. Yan, W.P. Yan, X.Q. Yan, H.J. Yang, H.L. Yang, H.X. Yang, J.H. Yang, R.J. Yang, T. Yang, Y. Yang, Y.F. Yang, Y.H. Yang, Y.Q. Yang, Y.X. Yang, Y.Z. Yang, M. Ye, M.H. Ye, Z.J. Ye, Junhao Yin, Z.Y. You, B.X. Yu, C.X. Yu, G. Yu, J.S. Yu, L.Q. Yu, M.C. Yu, T. Yu, X.D. Yu, Y.C. Yu, C.Z. Yuan, H. Yuan, J. Yuan, J. Yuan, L. Yuan, S.C. Yuan, X.Q. Yuan, Y. Yuan, Z.Y. Yuan, C.X. Yue, Ying Yue, A.A. Zafar, S.H. Zeng, X. Zeng, Y. Zeng, Yujie Zeng, Y.J. Zeng, X.Y. Zhai, Y.H. Zhan, A.Q. Zhang, B.L. Zhang, B.X. Zhang, D.H. Zhang, G.Y. Zhang, G.Y. Zhang, H. Zhang, H. Zhang, H.C. Zhang, H.H. Zhang, H.Q. Zhang, H.R. Zhang, H.Y. Zhang, Jin Zhang, J. Zhang, J.J. Zhang, J.L. Zhang, J.Q. Zhang, J.S. Zhang, J.W. Zhang, J.X. Zhang, J.Y. Zhang, J.Z. Zhang, Jianyu Zhang, L.M. Zhang, Lei Zhang, N. Zhang, P. Zhang, Q. Zhang, Q.Y. Zhang, R.Y. Zhang, S.H. Zhang, Shulei Zhang, X.M. Zhang, X.Y. Zhang, X.Y. Zhang, Y. Zhang, Y. Zhang, Y.T. Zhang, Y.H. Zhang, Y.M. Zhang, Y.P. Zhang, Z.D. Zhang, Z.H. Zhang, Z.L. Zhang, Z.L. Zhang, Z.X. Zhang, Z.Y. Zhang, Z.Y. Zhang, Z.Z. Zhang, Z.Z. Zhang, G. Zhao, J.Y. Zhao, J.Z. Zhao, L. Zhao, L. Zhao, M.G. Zhao, N. Zhao, R.P. Zhao, S.J. Zhao, Y.B. Zhao, Y.L. Zhao, Y.X. Zhao, Z.G. Zhao, A. Zhemchugov, B. Zheng, B.M. Zheng, J.P. Zheng, W.J. Zheng, X.R. Zheng, Y.H. Zheng, B. Zhong, C. Zhong, H. Zhou, J.Q. Zhou, J.Y. Zhou, S. Zhou, X. Zhou, X.K. Zhou, X.R. Zhou, X.Y. Zhou, Y.X. Zhou, Y.Z. Zhou, A.N. Zhu, J. Zhu, K. Zhu, K.J. Zhu, K.S. Zhu, L. Zhu, L.X. Zhu, S.H. Zhu, T.J. Zhu, W.D. Zhu, W.J. Zhu, W.Z. Zhu, Y.C. Zhu, Z.A. Zhu, X.Y. Zhuang, J.H. Zou, J. Zu","doi":"10.1016/j.physletb.2025.140099","DOIUrl":"https://doi.org/10.1016/j.physletb.2025.140099","url":null,"abstract":"","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"17 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145786029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVN Space Experiment: The First Results of Its In-orbit Operation MVN空间实验:其在轨运行的初步结果
IF 0.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-19 DOI: 10.1134/S1063773725700446
M. V. Buntov, N. P. Semena, V. V. Levin, S. V. Molkov, F. A. Voronin, D. M. Gamkov, A. G. Glushenko, E. B. Gurova, O. V. Demin, V. P. Konoshenko, A. V. Krivchenko, V. M. Kuznetsov, M. V. Kuznetsova, I. Yu. Lapshov, V. A. Lipilin, A. A. Lutovinov, A. V. Markov, A. M. Pristash, A. A. Rotin, D. V. Serbinov, D. V. Sibirtsev, D. M. Surin, V. V. Tambov, A. G. Toporkov, A. E. Shtykovskiy, G. A. Kharchenko

We describe the scientific and technological goals of the ‘‘Monitor Vsego Neba’’ (MVN, All-Sky Monitor) space experiment and present its first results. This experiment began to operate onboard the International Space Station (ISS) on December 19, 2024. An analysis of the first results of its observations and the in-orbit operation of the equipment has shown that the basic MVN characteristics correspond to the declared ones in sensitivity, spatial, energy, and time resolution. We have obtained observational data for the brightest sources that can be used for the further calibration of the instrument. We have also determined the particle background of the Earth’s radiation belts and the constraints that are imposed by the enhanced background in the regions of the South Atlantic Anomaly and high latitudes on the observations of celestial sources. We have revealed a problem of the thermal regime of the detectors due to the off-design additional heat flow from the ISS surface that reduces the effective exposure time of observations. The technological goals of the experiment are successfully accomplished. An analysis of the operation of the equipment has shown the validity of the underlying software and hardware solutions. We present the possibility of extending the scientific part of the research with regard to direct X-ray observations of the Sun.

我们描述了“Vsego Neba”(MVN, All-Sky Monitor)空间实验的科学和技术目标,并介绍了它的第一批结果。这项实验于2024年12月19日开始在国际空间站(ISS)上进行。对首次观测结果和设备在轨运行情况的分析表明,MVN的基本特性在灵敏度、空间分辨率、能量分辨率和时间分辨率等方面符合申报要求。我们已经获得了最亮光源的观测数据,这些数据可以用于仪器的进一步校准。我们还确定了地球辐射带的粒子背景,以及南大西洋异常区和高纬度地区背景增强对天体源观测的约束。由于国际空间站表面的非设计附加热流减少了观测的有效曝光时间,我们揭示了探测器的热状态问题。实验成功地实现了实验的技术目标。通过对设备运行情况的分析,验证了底层软硬件解决方案的有效性。我们提出了将研究的科学部分扩展到太阳的x射线直接观测的可能性。
{"title":"MVN Space Experiment: The First Results of Its In-orbit Operation","authors":"M. V. Buntov,&nbsp;N. P. Semena,&nbsp;V. V. Levin,&nbsp;S. V. Molkov,&nbsp;F. A. Voronin,&nbsp;D. M. Gamkov,&nbsp;A. G. Glushenko,&nbsp;E. B. Gurova,&nbsp;O. V. Demin,&nbsp;V. P. Konoshenko,&nbsp;A. V. Krivchenko,&nbsp;V. M. Kuznetsov,&nbsp;M. V. Kuznetsova,&nbsp;I. Yu. Lapshov,&nbsp;V. A. Lipilin,&nbsp;A. A. Lutovinov,&nbsp;A. V. Markov,&nbsp;A. M. Pristash,&nbsp;A. A. Rotin,&nbsp;D. V. Serbinov,&nbsp;D. V. Sibirtsev,&nbsp;D. M. Surin,&nbsp;V. V. Tambov,&nbsp;A. G. Toporkov,&nbsp;A. E. Shtykovskiy,&nbsp;G. A. Kharchenko","doi":"10.1134/S1063773725700446","DOIUrl":"10.1134/S1063773725700446","url":null,"abstract":"<p>We describe the scientific and technological goals of the ‘‘Monitor Vsego Neba’’ (MVN, All-Sky Monitor) space experiment and present its first results. This experiment began to operate onboard the International Space Station (ISS) on December 19, 2024. An analysis of the first results of its observations and the in-orbit operation of the equipment has shown that the basic MVN characteristics correspond to the declared ones in sensitivity, spatial, energy, and time resolution. We have obtained observational data for the brightest sources that can be used for the further calibration of the instrument. We have also determined the particle background of the Earth’s radiation belts and the constraints that are imposed by the enhanced background in the regions of the South Atlantic Anomaly and high latitudes on the observations of celestial sources. We have revealed a problem of the thermal regime of the detectors due to the off-design additional heat flow from the ISS surface that reduces the effective exposure time of observations. The technological goals of the experiment are successfully accomplished. An analysis of the operation of the equipment has shown the validity of the underlying software and hardware solutions. We present the possibility of extending the scientific part of the research with regard to direct X-ray observations of the Sun.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"51 5","pages":"287 - 309"},"PeriodicalIF":0.8,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145779258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K -nonizing K -nonizing
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-19 DOI: 10.1016/j.physletb.2025.140118
Jose Beltrán Jiménez, Teodor Borislavov Vasilev, Darío Jaramillo-Garrido, Antonio L. Maroto, Prado Martín-Moruno
{"title":" K -nonizing","authors":"Jose Beltrán Jiménez, Teodor Borislavov Vasilev, Darío Jaramillo-Garrido, Antonio L. Maroto, Prado Martín-Moruno","doi":"10.1016/j.physletb.2025.140118","DOIUrl":"https://doi.org/10.1016/j.physletb.2025.140118","url":null,"abstract":"","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"19 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic Variations in the Mean Recurrence Times of Solar Flares in Active Regions 太阳耀斑在活动区平均重现时间的周期变化
IF 0.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-19 DOI: 10.1134/S1063773725700409
Yu. A. Nagovitsyn, A. I. Larionova, A. A. Osipova

The recurrence times RT (also known as waiting times) of solar flares in active regions in soft X-rays are studied using GOES satellite data from 1998 to 2025. It is shown that the RT distribution is fairly well approximated by a lognormal distribution. Based on grouped samples, changes in three types of average values of log RT distributions over time are studied. From these studies, it can be concluded that the average logarithms of recurrence times, regardless of the method of calculation, show variations similar to variations in sunspot numbers SSN; mean RT values vary between 110 and 280 min.

利用1998 ~ 2025年GOES卫星数据,研究了太阳耀斑在软x射线活跃区域的重现时间RT(也称为等待时间)。结果表明,RT分布可以很好地近似于对数正态分布。在分组样本的基础上,研究了三种类型的对数RT分布平均值随时间的变化。从这些研究中可以得出结论,无论采用何种计算方法,重复次数的平均对数都表现出类似于太阳黑子数SSN的变化;平均RT值在110 - 280分钟之间变化。
{"title":"Cyclic Variations in the Mean Recurrence Times of Solar Flares in Active Regions","authors":"Yu. A. Nagovitsyn,&nbsp;A. I. Larionova,&nbsp;A. A. Osipova","doi":"10.1134/S1063773725700409","DOIUrl":"10.1134/S1063773725700409","url":null,"abstract":"<p>The recurrence times <i>RT</i> (also known as waiting times) of solar flares in active regions in soft X-rays are studied using GOES satellite data from 1998 to 2025. It is shown that the <i>RT</i> distribution is fairly well approximated by a lognormal distribution. Based on grouped samples, changes in three types of average values of log <i>RT</i> distributions over time are studied. From these studies, it can be concluded that the average logarithms of recurrence times, regardless of the method of calculation, show variations similar to variations in sunspot numbers <i>SSN</i>; mean <i>RT</i> values vary between 110 and 280 min.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"51 5","pages":"322 - 326"},"PeriodicalIF":0.8,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145779259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slow Light by Topological Routing in Synthetic Dimensions 合成维拓扑路由慢光
IF 7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1021/acsphotonics.5c02204
Seunghwi Kim, Sander A. Mann, Xiang Ni, Andrea Alù
Delay lines are essential components in photonic systems, facilitating data processing, storage, interconnects, and generally enhancing light-matter interactions. They rely on slow light phenomena, which can be realized in integrated photonic platforms such as coupled-resonator optical waveguides, photonic crystals and optical waveguides. In practice, delay lines require robustness, broadband operation and small footprints. Yet, typically, these features need to be traded against each other at the design stage due to constraints stemming from passivity, linearity and time-invariance. Here, we demonstrate that compactness, robustness and bandwidth can be simultaneously achieved by routing light in the synthetic frequency dimension along topological edge states, achieving delay-bandwidth products far beyond conventional limits combined with inherent robustness.
延迟线是光子系统的重要组成部分,促进数据处理、存储、互连,并通常增强光与物质的相互作用。它们依赖于慢光现象,这可以在耦合谐振腔光波导、光子晶体和光波导等集成光子平台上实现。实际上,延迟线需要鲁棒性、宽带操作和小占用空间。然而,通常情况下,由于无源性、线性和时不变性的限制,这些功能需要在设计阶段相互交换。在这里,我们证明了紧凑性、鲁棒性和带宽可以通过沿着拓扑边缘状态在合成频率维度上路由光来同时实现,从而实现远远超出常规极限的延迟-带宽乘积,并结合固有的鲁棒性。
{"title":"Slow Light by Topological Routing in Synthetic Dimensions","authors":"Seunghwi Kim, Sander A. Mann, Xiang Ni, Andrea Alù","doi":"10.1021/acsphotonics.5c02204","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02204","url":null,"abstract":"Delay lines are essential components in photonic systems, facilitating data processing, storage, interconnects, and generally enhancing light-matter interactions. They rely on slow light phenomena, which can be realized in integrated photonic platforms such as coupled-resonator optical waveguides, photonic crystals and optical waveguides. In practice, delay lines require robustness, broadband operation and small footprints. Yet, typically, these features need to be traded against each other at the design stage due to constraints stemming from passivity, linearity and time-invariance. Here, we demonstrate that compactness, robustness and bandwidth can be simultaneously achieved by routing light in the synthetic frequency dimension along topological edge states, achieving delay-bandwidth products far beyond conventional limits combined with inherent robustness.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"116 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SN Ia CSM 2020aeuh: A Massive Binary C/O White Dwarf Merger? SN Ia CSM 2020aeuh:巨大的C/O双白矮星合并?
IF 0.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-12-19 DOI: 10.1134/S1063773725700458
N. N. Chugai

The origin of the circumstellar (CS) shell of the unusual SN Ia 2020aeuh is explored using a light curve model and observational constraints. The synthesized ({}^{56})Ni mass (({approx}1) (M_{odot})), the mass of the CS shell (0.04–0.2 (M_{odot})), the radius ((2times 10^{16}) cm), and its expansion velocity (({lesssim}200) km s({}^{-1})) have been estimated. The large ({}^{56})Ni mass and the properties of the CS shell are consistent with the scenario of a massive binary C/O white dwarf merger that was accompanied by the loss of ({sim}0.1) (M_{odot}) of matter. The supernova is shown to have exploded ({gtrsim}30) years after the white dwarf merger.

利用光曲线模型和观测约束探讨了不寻常的SN Ia 2020aeuh的星周壳的起源。计算出了合成的({}^{56}) Ni质量(({approx}1)(M_{odot}))、CS壳层质量(0.04-0.2 (M_{odot}))、半径((2times 10^{16}) cm)和膨胀速度(({lesssim}200) km s ({}^{-1}))。巨大的({}^{56}) Ni质量和CS壳层的性质与巨大的C/O二元白矮星合并的情景一致,伴随着({sim}0.1)(M_{odot})物质的损失。这颗超新星在白矮星合并后({gtrsim}30)年爆炸。
{"title":"SN Ia CSM 2020aeuh: A Massive Binary C/O White Dwarf Merger?","authors":"N. N. Chugai","doi":"10.1134/S1063773725700458","DOIUrl":"10.1134/S1063773725700458","url":null,"abstract":"<p>The origin of the circumstellar (CS) shell of the unusual SN Ia 2020aeuh is explored using a light curve model and observational constraints. The synthesized <span>({}^{56})</span>Ni mass (<span>({approx}1)</span>\u0000 <span>(M_{odot})</span>), the mass of the CS shell (0.04–0.2 <span>(M_{odot})</span>), the radius (<span>(2times 10^{16})</span> cm), and its expansion velocity (<span>({lesssim}200)</span> km s<span>({}^{-1})</span>) have been estimated. The large <span>({}^{56})</span>Ni mass and the properties of the CS shell are consistent with the scenario of a massive binary C/O white dwarf merger that was accompanied by the loss of <span>({sim}0.1)</span>\u0000 <span>(M_{odot})</span> of matter. The supernova is shown to have exploded <span>({gtrsim}30)</span> years after the white dwarf merger.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"51 5","pages":"257 - 261"},"PeriodicalIF":0.8,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145779198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal quantum likelihood estimation 最优量子似然估计
IF 6.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2025-12-19 DOI: 10.1088/2058-9565/ae2b31
Alon Levi, Ziv Ossi, Eliahu Cohen and Amit Te’eni
A hybrid quantum–classical algorithm is a computational scheme in which quantum circuits are used to extract information that is then processed by a classical routine to guide subsequent quantum operations. These algorithms are especially valuable in the noisy intermediate-scale quantum era, where quantum resources are constrained and classical optimization plays a central role. Here, we improve the performance of a hybrid algorithm through principled, information-theoretic optimization. We focus on Quantum Likelihood Estimation (QLE)–-a hybrid algorithm designed to identify the Hamiltonian governing a quantum system by iteratively updating a weight distribution based on measurement outcomes and Bayesian inference. While QLE already achieves convergence using quantum measurements and Bayesian inference, its efficiency can vary greatly depending on the choice of parameters at each step. We propose an optimization strategy that dynamically selects the initial state, measurement basis, and evolution time in each iteration to maximize the mutual information between the measurement outcome and the true Hamiltonian. This approach builds upon the information-theoretic framework recently developed in Te’eni et al (2024 arXiv:2409.15549), and leverages mutual information as a guiding cost function for parameter selection. Our implementation employs a simulated annealing routine to minimize the conditional von Neumann entropy, thereby maximizing information gain in each iteration. The results demonstrate that our optimized version significantly reduces the number of iterations required for convergence, thus proposing a practical method for accelerating Hamiltonian learning in quantum systems. Finally, we propose a general scheme that extends our approach to solve a broader family of quantum learning problems.
混合量子-经典算法是一种计算方案,其中使用量子电路提取信息,然后通过经典例程处理以指导后续的量子操作。这些算法在嘈杂的中等规模量子时代尤其有价值,因为量子资源是有限的,经典优化起着核心作用。在这里,我们通过原则的、信息论的优化来提高混合算法的性能。我们专注于量子似然估计(QLE)——一种混合算法,旨在通过基于测量结果和贝叶斯推理迭代更新权重分布来识别控制量子系统的哈密顿量。虽然QLE已经通过量子测量和贝叶斯推理实现了收敛,但它的效率可能会因每一步参数的选择而有很大差异。我们提出了一种优化策略,在每次迭代中动态选择初始状态、测量基础和演化时间,以最大化测量结果与真哈密顿量之间的互信息。该方法建立在Te 'eni等人(2024 arXiv:2409.15549)最近开发的信息论框架之上,并利用互信息作为参数选择的指导成本函数。我们的实现采用模拟退火程序来最小化条件冯·诺伊曼熵,从而最大化每次迭代中的信息增益。结果表明,我们的优化版本显著减少了收敛所需的迭代次数,从而为加速量子系统中的哈密顿学习提供了一种实用的方法。最后,我们提出了一个通用方案,扩展了我们的方法来解决更广泛的量子学习问题。
{"title":"Optimal quantum likelihood estimation","authors":"Alon Levi, Ziv Ossi, Eliahu Cohen and Amit Te’eni","doi":"10.1088/2058-9565/ae2b31","DOIUrl":"https://doi.org/10.1088/2058-9565/ae2b31","url":null,"abstract":"A hybrid quantum–classical algorithm is a computational scheme in which quantum circuits are used to extract information that is then processed by a classical routine to guide subsequent quantum operations. These algorithms are especially valuable in the noisy intermediate-scale quantum era, where quantum resources are constrained and classical optimization plays a central role. Here, we improve the performance of a hybrid algorithm through principled, information-theoretic optimization. We focus on Quantum Likelihood Estimation (QLE)–-a hybrid algorithm designed to identify the Hamiltonian governing a quantum system by iteratively updating a weight distribution based on measurement outcomes and Bayesian inference. While QLE already achieves convergence using quantum measurements and Bayesian inference, its efficiency can vary greatly depending on the choice of parameters at each step. We propose an optimization strategy that dynamically selects the initial state, measurement basis, and evolution time in each iteration to maximize the mutual information between the measurement outcome and the true Hamiltonian. This approach builds upon the information-theoretic framework recently developed in Te’eni et al (2024 arXiv:2409.15549), and leverages mutual information as a guiding cost function for parameter selection. Our implementation employs a simulated annealing routine to minimize the conditional von Neumann entropy, thereby maximizing information gain in each iteration. The results demonstrate that our optimized version significantly reduces the number of iterations required for convergence, thus proposing a practical method for accelerating Hamiltonian learning in quantum systems. Finally, we propose a general scheme that extends our approach to solve a broader family of quantum learning problems.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"56 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145777639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust s±-wave pairing in a bilayer two-orbital model of pressurized La3Ni2O7 without the γ Fermi surface 无γ费米表面的加压La3Ni2O7双层双轨模型中的稳健s±波配对
IF 1 3区 物理与天体物理 Q4 PHYSICS, APPLIED Pub Date : 2025-12-19 DOI: 10.1016/j.physc.2025.1354824
Yi Gao
We studied the superconducting pairing symmetry based on a newly constructed tight-binding model of La3Ni2O7 under pressure, where the γ band sinks below the Fermi level and does not form the Fermi surface. The superconducting pairing symmetry is s±-wave and is robust against the variation of the interaction strength. In this model, although the γ and δ bands are away from the Fermi level, the superconducting pairing function on them is not tiny. Instead, since the top of the γ band and bottom of the δ band are both located at 500 meV away from the Fermi level, and they are almost nested by the peak structure in the spin fluctuation, thus by forming an anti-phase pairing function on them, these two bands act constructively to superconductivity. Finally with detailed derivation and numerical calculation, we demonstrate that the Fermi surface approximated Eliashberg equation may lead to deviation of the pairing symmetry.
我们基于新建立的La3Ni2O7在压力下的紧密结合模型研究了超导对对称性,其中γ带下沉到费米能级以下并且不形成费米表面。超导对对称性为s±波,对相互作用强度的变化具有较强的鲁棒性。在该模型中,虽然γ带和δ带远离费米能级,但它们上的超导配对作用并不小。相反,由于γ带的顶部和δ带的底部都位于距离费米能级约500 meV的位置,并且它们在自旋涨落中几乎被峰值结构嵌套,因此通过在它们上形成反相配对函数,这两个带对超导性起着积极的作用。最后通过详细的推导和数值计算,证明了费米曲面近似Eliashberg方程可能导致对对称性的偏离。
{"title":"Robust s±-wave pairing in a bilayer two-orbital model of pressurized La3Ni2O7 without the γ Fermi surface","authors":"Yi Gao","doi":"10.1016/j.physc.2025.1354824","DOIUrl":"10.1016/j.physc.2025.1354824","url":null,"abstract":"<div><div>We studied the superconducting pairing symmetry based on a newly constructed tight-binding model of La<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Ni<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mn>7</mn></mrow></msub></math></span> under pressure, where the <span><math><mi>γ</mi></math></span> band sinks below the Fermi level and does not form the Fermi surface. The superconducting pairing symmetry is <span><math><msub><mrow><mi>s</mi></mrow><mrow><mo>±</mo></mrow></msub></math></span>-wave and is robust against the variation of the interaction strength. In this model, although the <span><math><mi>γ</mi></math></span> and <span><math><mi>δ</mi></math></span> bands are away from the Fermi level, the superconducting pairing function on them is not tiny. Instead, since the top of the <span><math><mi>γ</mi></math></span> band and bottom of the <span><math><mi>δ</mi></math></span> band are both located at <span><math><mo>∼</mo></math></span>500 meV away from the Fermi level, and they are almost nested by the peak structure in the spin fluctuation, thus by forming an anti-phase pairing function on them, these two bands act constructively to superconductivity. Finally with detailed derivation and numerical calculation, we demonstrate that the Fermi surface approximated Eliashberg equation may lead to deviation of the pairing symmetry.</div></div>","PeriodicalId":20159,"journal":{"name":"Physica C-superconductivity and Its Applications","volume":"640 ","pages":"Article 1354824"},"PeriodicalIF":1.0,"publicationDate":"2025-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145788353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Photonics J. Biophotonics Laser Photonics Rev. Comput. Phys. Commun. J. Comput. Phys. Prog. Part. Nucl. Phys. Prog. Quantum Electron. Solid State Commun. IEEE Trans. Plasma Sci. Acoust. Phys. Appl. Magn. Reson. Astrophys. Bull. ASTROPHYSICS+ Braz. J. Phys. B LEBEDEV PHYS INST+ Commun. Math. Phys. Dokl. Phys. EPJ QUANTUM TECHNOL Exp. Astron. Few-Body Syst. Found. Phys. FRONT PHYS-BEIJING Gen. Relativ. Gravitation Indian J. Phys. Int. J. Theor. Phys. Jetp Lett. J. Astrophys. Astron. J CONTEMP PHYS-ARME+ J. Exp. Theor. Phys. J. High Energy Phys. J. Low Temp. Phys. J. Russ. Laser Res. J. Stat. Phys. J. Supercond. Novel Magn. J KOREAN PHYS SOC Kinematics Phys. Celestial Bodies Lett. Math. Phys. Living Rev. Relativ. Living Rev. Sol. Phys. Moscow Univ. Phys. Bull. Opt. Rev. Opt. Spectrosc. Phys. At. Nucl. Phys. Part. Nucl. Phys. Solid State PHYS WAVE PHENOM Plasma Phys. Rep. Plasmonics Quantum Inf. Process. Russ. J. Math. Phys. Russ. Phys. J. SCI CHINA PHYS MECH Sol. Phys. Sol. Syst. Res. Tech. Phys. Tech. Phys. Lett. Theor. Math. Phys. ACTA PHYS SIN-CH ED Acta Phys. Pol. B 光学学报 光子学报 Acta Phys. Pol. A Adv. Phys. ADV PHYS-X Adv. Condens. Matter Phys. Adv. High Energy Phys. Am. J. Phys. Ann. Phys. Annu. Rev. Condens. Matter Phys. Annu. Rev. Nucl. Part. Sci. Appl. Phys. Express Appl. Phys. Lett. Annu. Rev. Astron. Astrophys. ARCH ACOUST APL Photonics Appl. Phys. Rev. Ann. Phys. ASTRON ASTROPHYS Astrophys. J. Suppl. Ser. Astrophys. Space Sci. ASTROBIOLOGY Can. J. Phys. 液晶与显示 Chin. Phys. C Chin. Phys. B Classical Quantum Gravity CHIN OPT LETT Chin. J. Phys. Chin. Phys. Lett. Condens. Matter Phys. Commun. Phys. Commun. Theor. Phys. Contrib. Plasma Phys. Curr. Appl Phys. ENTROPY-SWITZ EPL-EUROPHYS LETT EUR PHYS J-SPEC TOP EUR PHYS J-APPL PHYS Front. Phys. High Pressure Res.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1