首页 > 最新文献

物理与天体物理最新文献

英文 中文
IF:
Trotter error and gate complexity of the SYK and sparse SYK models SYK和稀疏SYK模型的踏步误差和门复杂度
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-1999
Yiyuan Chen, Jonas Helsen, Maris Ozols
The Sachdev–Ye–Kitaev (SYK) model is a prominent model of strongly interacting fermions that serves as a toy model of quantum gravity and black hole physics. In this work, we study the Trotter error and gate complexity of the quantum simulation of the SYK model using Lie–Trotter–Suzuki formulas. Building on recent results by Chen and Brandão [6] — in particular their uniform smoothing technique for random matrix polynomials — we derive bounds on the first- and higher-order Trotter error of the SYK model, and subsequently find near-optimal gate complexities for simulating these models using Lie–Trotter–Suzuki formulas. For the $k$-local SYK model on $n$ Majorana fermions, at time $t$, our gate complexity estimates for the first-order Lie–Trotter–Suzuki formula scales with $tilde{mathcal{O}}(n^{k+frac{5}{2}}t^2)$ for even $k$ and $tilde{mathcal{O}}(n^{k+3}t^2)$ for odd $k$, and the gate complexity of simulations using higher-order formulas scales with $tilde{mathcal{O}}(n^{k+frac{1}{2}}t)$ for even $k$ and $tilde{mathcal{O}}(n^{k+1}t)$ for odd $k$. Given that the SYK model has $Theta(n^k)$ terms, these estimates are close to optimal. These gate complexities can be further improved upon in the context of simulating the time evolution of an arbitrary fixed input state $|psirangle$, leading to a $mathcal{O}(n^2)$-reduction in gate complexity for first-order formulas and $mathcal{O}(sqrt{n})$-reduction for higher-order formulas.

We also apply our techniques to the sparse SYK model, which is a simplified variant of the SYK model obtained by deleting all but a $Theta(n)$ fraction of the terms in a uniformly i.i.d. manner. We find the average (over the random term removal) gate complexity for simulating this model using higher-order formulas scales with $tilde{mathcal{O}}(n^{1+frac{1}{2}} t)$ for even $k$ and $tilde{mathcal{O}}(n^{2} t)$ for odd $k$. Similar to the full SYK model, we obtain a $mathcal{O}(sqrt{n})$-reduction simulating the time evolution of an arbitrary fixed input state $|psirangle$.

Our results highlight the potential of Lie–Trotter–Suzuki formulas for efficiently simulating the SYK and sparse SYK models, and our analytical methods can be naturally extended to other Gaussian random Hamiltonians.
Sachdev-Ye-Kitaev (SYK)模型是一个突出的强相互作用费米子模型,作为量子引力和黑洞物理的玩具模型。在这项工作中,我们使用Lie-Trotter-Suzuki公式研究了SYK模型的量子模拟的Trotter误差和门复杂度。基于Chen和brand b[6]最近的结果——特别是他们对随机矩阵多项式的均匀平滑技术——我们推导了SYK模型的一阶和高阶Trotter误差的界限,并随后找到了使用Lie-Trotter-Suzuki公式模拟这些模型的近最优门复杂度。对于$n$ Majorana fermions上的$k$ -local SYK模型,在$t$时刻,我们用$tilde{mathcal{O}}(n^{k+frac{5}{2}}t^2)$对偶$k$和$tilde{mathcal{O}}(n^{k+3}t^2)$对奇数$k$估计了一阶Lie-Trotter-Suzuki公式尺度下的门复杂度,以及用$tilde{mathcal{O}}(n^{k+frac{1}{2}}t)$对偶$k$和$tilde{mathcal{O}}(n^{k+1}t)$对奇数$k$模拟的门复杂度。考虑到SYK模型有$Theta(n^k)$项,这些估计接近于最优。在模拟任意固定输入状态$|psirangle$的时间演化的背景下,这些门的复杂性可以得到进一步改进,导致一阶公式的门的复杂性降低$mathcal{O}(n^2)$ -,高阶公式的门的复杂性降低$mathcal{O}(sqrt{n})$ -。我们还将我们的技术应用于稀疏SYK模型,该模型是SYK模型的简化变体,通过以统一的i.i.d方式删除除$Theta(n)$部分以外的所有项而获得。我们发现使用高阶公式模拟该模型的平均(在随机项去除之上)门复杂度为$tilde{mathcal{O}}(n^{1+frac{1}{2}} t)$表示偶数$k$, $tilde{mathcal{O}}(n^{2} t)$表示奇数$k$。与完整的SYK模型类似,我们得到了一个模拟任意固定输入状态$|psirangle$的时间演化的$mathcal{O}(sqrt{n})$ -约简。我们的结果突出了Lie-Trotter-Suzuki公式在有效模拟SYK和稀疏SYK模型方面的潜力,并且我们的分析方法可以自然地扩展到其他高斯随机哈密顿量。
{"title":"Trotter error and gate complexity of the SYK and sparse SYK models","authors":"Yiyuan Chen, Jonas Helsen, Maris Ozols","doi":"10.22331/q-2026-02-09-1999","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-1999","url":null,"abstract":"The Sachdev–Ye–Kitaev (SYK) model is a prominent model of strongly interacting fermions that serves as a toy model of quantum gravity and black hole physics. In this work, we study the Trotter error and gate complexity of the quantum simulation of the SYK model using Lie–Trotter–Suzuki formulas. Building on recent results by Chen and Brandão [6] — in particular their uniform smoothing technique for random matrix polynomials — we derive bounds on the first- and higher-order Trotter error of the SYK model, and subsequently find near-optimal gate complexities for simulating these models using Lie–Trotter–Suzuki formulas. For the $k$-local SYK model on $n$ Majorana fermions, at time $t$, our gate complexity estimates for the first-order Lie–Trotter–Suzuki formula scales with $tilde{mathcal{O}}(n^{k+frac{5}{2}}t^2)$ for even $k$ and $tilde{mathcal{O}}(n^{k+3}t^2)$ for odd $k$, and the gate complexity of simulations using higher-order formulas scales with $tilde{mathcal{O}}(n^{k+frac{1}{2}}t)$ for even $k$ and $tilde{mathcal{O}}(n^{k+1}t)$ for odd $k$. Given that the SYK model has $Theta(n^k)$ terms, these estimates are close to optimal. These gate complexities can be further improved upon in the context of simulating the time evolution of an arbitrary fixed input state $|psirangle$, leading to a $mathcal{O}(n^2)$-reduction in gate complexity for first-order formulas and $mathcal{O}(sqrt{n})$-reduction for higher-order formulas.<br/>\u0000<br/> We also apply our techniques to the sparse SYK model, which is a simplified variant of the SYK model obtained by deleting all but a $Theta(n)$ fraction of the terms in a uniformly i.i.d. manner. We find the average (over the random term removal) gate complexity for simulating this model using higher-order formulas scales with $tilde{mathcal{O}}(n^{1+frac{1}{2}} t)$ for even $k$ and $tilde{mathcal{O}}(n^{2} t)$ for odd $k$. Similar to the full SYK model, we obtain a $mathcal{O}(sqrt{n})$-reduction simulating the time evolution of an arbitrary fixed input state $|psirangle$.<br/>\u0000<br/> Our results highlight the potential of Lie–Trotter–Suzuki formulas for efficiently simulating the SYK and sparse SYK models, and our analytical methods can be naturally extended to other Gaussian random Hamiltonians.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"18 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circular Dichroism without Absorption in Isolated Chiral Dielectric Mie Particles 孤立手性介电Mie粒子无吸收的圆二色性
IF 7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.1021/acsphotonics.5c02076
Rafael S. Dutra,Felipe A. Pinheiro,Diney S. Ether Jr.,Cyriaque Genet,Nathan B. Viana,Paulo A. Maia Neto
We demonstrate that an effect phenomenologically analogous to circular dichroism can arise even for dielectric and isotropic chiral spherical particles. By analyzing the polarimetry of light scattered from a chiral, lossless microsphere illuminated with linearly polarized light, we show that the scattered light becomes nearly circularly polarized, exhibiting large nonresonant values of the Stokes parameter S3 for a broad range of visible frequencies. This phenomenon occurs only in the Mie regime, with the microsphere radius comparable to the wavelength, and provided that the scattered light is collected by a high-NA objective lens, including nonparaxial Fourier components. Altogether, our findings offer a theoretical framework and motivation for an experimental demonstration of a novel chiroptical effect with isolated dielectric particles, with potential applications in enantioselection and characterization of single microparticles, each and every one with its own chiral response.
我们证明了一种现象上类似于圆二色性的效应甚至可以出现在介电性和各向同性手性球形粒子中。通过分析线偏振光照射下的手性无损微球散射光的偏振特性,我们发现散射光变得接近圆偏振,在很宽的可见频率范围内表现出很大的Stokes参数S3的非共振值。这种现象只发生在Mie状态下,微球半径与波长相当,并且散射光由高na物镜收集,包括非傍轴傅立叶分量。总之,我们的发现提供了一个理论框架和动机,实验证明了一种新的手性效应与孤立的介电粒子,具有潜在的应用在单个微粒的对映体选择和表征,每一个都有自己的手性响应。
{"title":"Circular Dichroism without Absorption in Isolated Chiral Dielectric Mie Particles","authors":"Rafael S. Dutra,Felipe A. Pinheiro,Diney S. Ether Jr.,Cyriaque Genet,Nathan B. Viana,Paulo A. Maia Neto","doi":"10.1021/acsphotonics.5c02076","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02076","url":null,"abstract":"We demonstrate that an effect phenomenologically analogous to circular dichroism can arise even for dielectric and isotropic chiral spherical particles. By analyzing the polarimetry of light scattered from a chiral, lossless microsphere illuminated with linearly polarized light, we show that the scattered light becomes nearly circularly polarized, exhibiting large nonresonant values of the Stokes parameter S3 for a broad range of visible frequencies. This phenomenon occurs only in the Mie regime, with the microsphere radius comparable to the wavelength, and provided that the scattered light is collected by a high-NA objective lens, including nonparaxial Fourier components. Altogether, our findings offer a theoretical framework and motivation for an experimental demonstration of a novel chiroptical effect with isolated dielectric particles, with potential applications in enantioselection and characterization of single microparticles, each and every one with its own chiral response.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"3 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-thermal processes in standard big bang nucleosynthesis. Part III. Reactions with slow nuclei and the overall effect 标准大爆炸核合成中的非热过程。第三部分。慢核反应和整体效应
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1088/1475-7516/2026/02/025
V.T. Voronchev
The present paper completes a series of our works on non-thermal nuclear processes in big bang nucleosynthesis (BBN) started in JCAP 05 (2008) 010 (Part I) and 05 (2009) 001 (Part II). The processes are triggered by non-Maxwellian particles naturally born in the main BBN reactions. Half of these reactions generate fast particles k+ (= n,p,t,3He,α). The other half, being radiative capture processes, produce slow nuclei k- (= d,t,3He,7Li,7Be) which can undergo (k-,n) reactions with neutrons having large cross sections. The particle production rate Rk, thermalization time τk, and effective number density nk are determined. It is shown that at the early stage of BBN the number density of slow deuterons (respectively, 3He) can exceed the number densities of Maxwellian 7Li and 7Be (respectively, 7Be) ions. To clarify the overall non-Maxwellian effect on BBN, both types of the non-Maxwellian particles are taken into account in the reaction network. Particular attention is paid to two-step sequential processes like p(n,γ)d-(n,γ)t, d(p,γ)3He-(n,p)t, t(α,γ)7Li-(n,γ)8Li, 3He(α,γ)7Be-(n,p)7Li, d(t,α)n+(A,n)a1a2, and d(3He,α)p+(A,p)a1a2 with (A,a1,a2) = (7Li,t,α) and (7Be,3He,α). It is obtained that the non-Maxwellian particles can selectively affect the element abundances, e.g., improve the prediction on 7Li/H by ∼ 1.5% and at the same time leave unchanged the 4He abundance. The main conclusion however is that these particles are unable to significantly change the standard picture of BBN in general, and provide a pathway toward a solution of the cosmological lithium problem in particular.
本论文完成了我们从JCAP 05(2008) 010(第一部分)和05(2009)001(第二部分)开始的一系列关于大爆炸核合成(BBN)中的非热核过程的工作。这些过程是由在主要的BBN反应中自然产生的非麦克斯韦粒子触发的。这些反应中有一半产生快速粒子k+ (= n,p,t,3He,α)。另一半是辐射俘获过程,产生慢核k- (= d,t,3He,7Li,7Be),它可以与具有大截面的中子进行(k-,n)反应。确定了粒子产生速率Rk、热化时间τk和有效数密度nk。结果表明,在BBN的早期,慢氘核(分别为3He)的数量密度可以超过麦克斯韦7Li和7Be离子(分别为7Be)的数量密度。为了阐明对BBN的总体非麦克斯韦效应,在反应网络中考虑了两种类型的非麦克斯韦粒子。特别关注两步连续的过程像p (n,γ)d - t (n,γ),d (p,γ)3 - (n, p) t, t(α、γ)7 li -李(n,γ)8 3他(α、γ)7 -李(n, p) 7 d (t)α)n + (A, n) a1a2和d(3他,α)p + (A, p) a1a2 (a1, a2) =(7李,t,α)和(他7,3,α)。结果表明,非麦克斯韦粒子可以选择性地影响元素丰度,例如,在保持4He丰度不变的情况下,将7Li/H的预测提高~ 1.5%。然而,主要的结论是,这些粒子一般来说无法显著改变BBN的标准图像,并为解决宇宙锂问题提供了一条途径。
{"title":"Non-thermal processes in standard big bang nucleosynthesis. Part III. Reactions with slow nuclei and the overall effect","authors":"V.T. Voronchev","doi":"10.1088/1475-7516/2026/02/025","DOIUrl":"https://doi.org/10.1088/1475-7516/2026/02/025","url":null,"abstract":"The present paper completes a series of our works on non-thermal nuclear processes in big bang nucleosynthesis (BBN) started in JCAP 05 (2008) 010 (Part I) and 05 (2009) 001 (Part II). The processes are triggered by non-Maxwellian particles naturally born in the main BBN reactions. Half of these reactions generate fast particles k+ (= n,p,t,3He,α). The other half, being radiative capture processes, produce slow nuclei k- (= d,t,3He,7Li,7Be) which can undergo (k-,n) reactions with neutrons having large cross sections. The particle production rate Rk, thermalization time τk, and effective number density nk are determined. It is shown that at the early stage of BBN the number density of slow deuterons (respectively, 3He) can exceed the number densities of Maxwellian 7Li and 7Be (respectively, 7Be) ions. To clarify the overall non-Maxwellian effect on BBN, both types of the non-Maxwellian particles are taken into account in the reaction network. Particular attention is paid to two-step sequential processes like p(n,γ)d-(n,γ)t, d(p,γ)3He-(n,p)t, t(α,γ)7Li-(n,γ)8Li, 3He(α,γ)7Be-(n,p)7Li, d(t,α)n+(A,n)a1a2, and d(3He,α)p+(A,p)a1a2 with (A,a1,a2) = (7Li,t,α) and (7Be,3He,α). It is obtained that the non-Maxwellian particles can selectively affect the element abundances, e.g., improve the prediction on 7Li/H by ∼ 1.5% and at the same time leave unchanged the 4He abundance. The main conclusion however is that these particles are unable to significantly change the standard picture of BBN in general, and provide a pathway toward a solution of the cosmological lithium problem in particular.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"59 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bosonic quantum Fourier codes 玻色子量子傅立叶编码
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-2000
Anthony Leverrier
While 2-level systems, aka qubits, are a natural choice to perform a logical quantum computation, the situation is less clear at the physical level. Encoding information in higher-dimensional physical systems can indeed provide a first level of redundancy and error correction that simplifies the overall fault-tolerant architecture. A challenge then is to ensure universal control over the encoded qubits. Here, we explore an approach where information is encoded in an irreducible representation of a finite subgroup of $U(2)$ through an inverse quantum Fourier transform. We illustrate this idea by applying it to the real Pauli group $langle X, Zrangle$ in the bosonic setting. The resulting two-mode Fourier cat code displays good error correction properties and admits an experimentally-friendly universal gate set that we discuss in detail.
虽然2级系统(又名量子位)是执行逻辑量子计算的自然选择,但在物理层面上的情况不太清楚。在高维物理系统中编码信息确实可以提供一级冗余和纠错,从而简化整个容错体系结构。因此,一个挑战是确保对编码量子位的通用控制。在这里,我们探索了一种方法,通过反量子傅里叶变换,将信息编码为$U(2)$的有限子群的不可约表示。我们通过将其应用于玻色子环境中的实际泡利群$langle X, Zrangle$来说明这一思想。所得到的双模傅里叶码显示出良好的纠错性能,并允许实验友好的通用门集,我们将详细讨论。
{"title":"Bosonic quantum Fourier codes","authors":"Anthony Leverrier","doi":"10.22331/q-2026-02-09-2000","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-2000","url":null,"abstract":"While 2-level systems, aka qubits, are a natural choice to perform a logical quantum computation, the situation is less clear at the physical level. Encoding information in higher-dimensional physical systems can indeed provide a first level of redundancy and error correction that simplifies the overall fault-tolerant architecture. A challenge then is to ensure universal control over the encoded qubits. Here, we explore an approach where information is encoded in an irreducible representation of a finite subgroup of $U(2)$ through an inverse quantum Fourier transform. We illustrate this idea by applying it to the real Pauli group $langle X, Zrangle$ in the bosonic setting. The resulting two-mode Fourier cat code displays good error correction properties and admits an experimentally-friendly universal gate set that we discuss in detail.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"241 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity dependence of K*(892) ± production in pp collisions at [formula omitted] TeV [公式省略]TeV下pp碰撞K*(892) ±产量的多重依赖性
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140253
The ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, Zul Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, H.M. Alfanda, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelsh, C. Arata, S. Arcelli, R. Arnaldi, J. G M C A Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, D. Averyanov, M.D. Azmi, H. Baba, A. R J Babu, A. Badal, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaf, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, S. Belokurova, L. G E Beltran, Y. A V Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y. E M Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M. F T Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J. M M Camacho, P. Camerini, M.T. Camerlingo, F. D M Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L. A D Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J. W O Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, P. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, M.R. Ciupek, G. Clai, F. Colamaria, J.S. Colburn, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. De Cataldo, J. De Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G. G A De Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divi, ø Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, G. Feofilov, A. Fernández Téllez, L. Ferrandi, M.B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V. J G Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, E. Frajna, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, D.R. Gangadharan, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M. B Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Gl, E. Glimos, V. Gonzalez, P. Gordeev, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellb, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I. P M Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, S. Iurchenko, M. Ivanov, M. Ivanov, V. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A. A P Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. Kalweit, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, E. Karpechev, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-B”osing, M. Kleiner, A. Kluge, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, V. Kuskov, M. Kutyla, A. Kuznetsov, M.J. Kweon, Y. Kwon, S. L La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, P. Larionov, E. Laudi, L. Lautner, R. A N Laveaga, R. Lavicka, R. Lea, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, R.C. Lemmon, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G. S S Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, F.V. Lugo, J. Luo, G. Luparello, M. A T Johnson, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, M. Malaev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M. P P Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, O. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J. E M Mendez, E. Meninno, A.S. Menon, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miśkowiec, A. Modak, B. Mohanty, M. Mohisin, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, S. Panebianco, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, V. Petrov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, L. Quaglia, A. M K Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-álvarez, M. Rasa, S.S. Räsänen, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, V. Riabov, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Røed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, A. Rosano, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, L. C V Ryder, J. Ryu, W. Rzesa, B. Sabiu, S. Sadhu, S. Sadovsky, J. Saetre, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, K. Sajdakova, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, M. H P Sas, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M.O. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schr, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, A. Shangaraev, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R. J M Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, C.P. Stylianidis, A. A P Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, A. Tikhonov, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L. V R Van Doremalen, M. Van Leeuwen, C.A. Van Veen, R. J G Van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M. M O Virta, A. Vodopyanov, B. Volkel, M.A. Völkl, S.A. Voloshin, G. Volpe, B. Von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, M. Winn, J. Witte, M. Wojnar, J.R. Wright, C.-T Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, M. Zhalov, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, S.C. Zugravel, N. Zurlo
The first results of K*(892)<ce:sup loc="post"> ± </ce:sup> production at midrapidity (|<ce:italic>y</ce:italic>| < 0.5) in pp collisions at <mml:math altimg="si2.svg"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mspace width="0.33em"></mml:mspace><mml:mo linebreak="goodbreak">=</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV as a function of the event multiplicity are presented. The K*(892)<ce:sup loc="post"> ± </ce:sup> has been reconstructed via its hadronic decay channel K<mml:math altimg="si5.svg"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>*</mml:mo></mml:msup><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mn>892</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>±</mml:mo></mml:msup><mml:mo>→</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:msup><mml:mi>π</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mspace width="0.33em"></mml:mspace><mml:mo linebreak="goodbreak">+</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:mrow></mml:math> using the ALICE detector at the LHC. For each multiplicity class, the differential transverse momentum (<ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>) spectrum, the mean transverse momentum ⟨<ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>⟩, the <ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>-integrated yield (d<ce:italic>N</ce:italic>/d<ce:italic>y</ce:italic>), and the ratio of the K*(892)<ce:sup loc="post"> ± </ce:sup> to <mml:math altimg="si3.svg"><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:math> yields are reported. These are consistent with previous K*(892)<ce:sup loc="post">0</ce:sup> resonance results with a higher level of precision. Comparisons with phenomenological models such as PYTHIA6, PYTHIA8, EPOS-LHC, and DIPSY are also discussed. For the first time, a significant K*(892)<ce:sup loc="post"> ± </ce:sup>/<mml:math altimg="si3.svg"><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:math> suppression in pp collisions is observed at a 7<ce:italic>σ</ce:italic> level passing from low to high multiplicity events. The ratios of the <ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>-differential yields of K*(892)<ce:sup loc="post"> ± </ce:sup> and <mml:math altimg="si3.svg"><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:math> in high and low multiplicity events are also presented along with their double ratio. For <ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf> ≲ 2 GeV/<ce:italic>c</ce:italic>
给出了s=13 TeV的pp碰撞中速(|y| <; 0.5)下K*(892) ± 产率与事件多重度的函数关系的初步结果。利用ALICE探测器通过K*(892)±→π±+KS0的强子衰变通道重构了K*(892) ± 。对于每个多重性类别,报告了微分横向动量(pT)谱,平均横向动量⟨pT⟩,pT积分产率(dN/dy)和K*(892) ± 与KS0产率的比率。这与先前的K*(892)0共振结果一致,精度更高。并与PYTHIA6、PYTHIA8、EPOS-LHC和DIPSY等现象学模型进行了比较。首次在7σ水平上观察到pp碰撞中K*(892) ± /KS0的显著抑制。K*(892) ± 和KS0在高、低多重度事件下的pt差产率的比值,以及它们的双比值。对于pT > 2 GeV/c,这一双比值持续低于1,大于3σ,表明抑制主要影响低pT共振。在重离子碰撞中,K*(892) ± /KS0比随多重度的增加而减小的趋势,通常是由于短周期共振的衰变粒子的再散射,在没有使用强子加力燃烧器的情况下,用EPOS-LHC模型再现了这种趋势。
{"title":"Multiplicity dependence of K*(892) ± production in pp collisions at [formula omitted] TeV","authors":"The ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, Zul Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, H.M. Alfanda, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelsh, C. Arata, S. Arcelli, R. Arnaldi, J. G M C A Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, D. Averyanov, M.D. Azmi, H. Baba, A. R J Babu, A. Badal, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaf, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, S. Belokurova, L. G E Beltran, Y. A V Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y. E M Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M. F T Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J. M M Camacho, P. Camerini, M.T. Camerlingo, F. D M Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L. A D Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J. W O Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, P. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, M.R. Ciupek, G. Clai, F. Colamaria, J.S. Colburn, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. De Cataldo, J. De Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G. G A De Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divi, ø Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, G. Feofilov, A. Fernández Téllez, L. Ferrandi, M.B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V. J G Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, E. Frajna, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, D.R. Gangadharan, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M. B Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Gl, E. Glimos, V. Gonzalez, P. Gordeev, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellb, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I. P M Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, S. Iurchenko, M. Ivanov, M. Ivanov, V. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A. A P Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. Kalweit, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, E. Karpechev, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-B”osing, M. Kleiner, A. Kluge, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, V. Kuskov, M. Kutyla, A. Kuznetsov, M.J. Kweon, Y. Kwon, S. L La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, P. Larionov, E. Laudi, L. Lautner, R. A N Laveaga, R. Lavicka, R. Lea, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, R.C. Lemmon, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G. S S Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, F.V. Lugo, J. Luo, G. Luparello, M. A T Johnson, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, M. Malaev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M. P P Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, O. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J. E M Mendez, E. Meninno, A.S. Menon, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miśkowiec, A. Modak, B. Mohanty, M. Mohisin, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, S. Panebianco, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, V. Petrov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, L. Quaglia, A. M K Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-álvarez, M. Rasa, S.S. Räsänen, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, V. Riabov, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Røed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, A. Rosano, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, L. C V Ryder, J. Ryu, W. Rzesa, B. Sabiu, S. Sadhu, S. Sadovsky, J. Saetre, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, K. Sajdakova, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, M. H P Sas, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M.O. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schr, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, A. Shangaraev, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R. J M Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, C.P. Stylianidis, A. A P Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, A. Tikhonov, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L. V R Van Doremalen, M. Van Leeuwen, C.A. Van Veen, R. J G Van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M. M O Virta, A. Vodopyanov, B. Volkel, M.A. Völkl, S.A. Voloshin, G. Volpe, B. Von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, M. Winn, J. Witte, M. Wojnar, J.R. Wright, C.-T Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, M. Zhalov, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, S.C. Zugravel, N. Zurlo","doi":"10.1016/j.physletb.2026.140253","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140253","url":null,"abstract":"The first results of K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; production at midrapidity (|&lt;ce:italic&gt;y&lt;/ce:italic&gt;| &lt; 0.5) in pp collisions at &lt;mml:math altimg=\"si2.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:msqrt&gt;&lt;mml:mi&gt;s&lt;/mml:mi&gt;&lt;/mml:msqrt&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;=&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mn&gt;13&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt; TeV as a function of the event multiplicity are presented. The K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; has been reconstructed via its hadronic decay channel K&lt;mml:math altimg=\"si5.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;*&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;(&lt;/mml:mo&gt;&lt;mml:mn&gt;892&lt;/mml:mn&gt;&lt;mml:mo&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;±&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;π&lt;/mml:mi&gt;&lt;mml:mo&gt;±&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;+&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt; using the ALICE detector at the LHC. For each multiplicity class, the differential transverse momentum (&lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;) spectrum, the mean transverse momentum ⟨&lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;⟩, the &lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;-integrated yield (d&lt;ce:italic&gt;N&lt;/ce:italic&gt;/d&lt;ce:italic&gt;y&lt;/ce:italic&gt;), and the ratio of the K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; to &lt;mml:math altimg=\"si3.svg\"&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:math&gt; yields are reported. These are consistent with previous K*(892)&lt;ce:sup loc=\"post\"&gt;0&lt;/ce:sup&gt; resonance results with a higher level of precision. Comparisons with phenomenological models such as PYTHIA6, PYTHIA8, EPOS-LHC, and DIPSY are also discussed. For the first time, a significant K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt;/&lt;mml:math altimg=\"si3.svg\"&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:math&gt; suppression in pp collisions is observed at a 7&lt;ce:italic&gt;σ&lt;/ce:italic&gt; level passing from low to high multiplicity events. The ratios of the &lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;-differential yields of K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; and &lt;mml:math altimg=\"si3.svg\"&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:math&gt; in high and low multiplicity events are also presented along with their double ratio. For &lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt; ≲ 2 GeV/&lt;ce:italic&gt;c&lt;/ce:italic&gt;","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"111 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimising the number of edges in LC-equivalent graph states 最小化在lc等价图状态中的边的数量
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-2001
Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen
Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.
图态是一类强大的纠缠态,在量子通信和量子计算中有着广泛的应用。将一个图状态映射到另一个图状态的局部Clifford (LC)操作可以改变相应图的结构,包括改变边的数量。在这里,我们处理相关的边最小化问题:在给定图的lc等价类中找到具有最小边数的图。这样的图被称为最小边缘表示(MER),对于最小化创建图状态所需的资源至关重要。我们利用Bouchet的lc等价代数公式将边最小化问题编码为整数线性规划(EDM-ILP)。我们进一步提出了一种由局部聚类系数引导的模拟退火(EDM-SA)方法来最小化边缘。通过结合EDM-SA和EDM-ILP,我们确定了最多16个量子位的图态的新MERs。我们将ILP扩展到加权边最小化,其中每条边都有一个相关的权值,并证明了这个问题是np完全的。最后,我们使用我们的工具来最小化使用聚变操作创建全光子广义中继器图状态所需的资源。
{"title":"Minimising the number of edges in LC-equivalent graph states","authors":"Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen","doi":"10.22331/q-2026-02-09-2001","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-2001","url":null,"abstract":"Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"9 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable Visible/NIR Dual-Narrowband Organic Photodetectors with Photomultiplication for Interference-Resistant Optical Communication 用于抗干扰光通信的可调谐可见光/近红外双窄带光电倍增有机光电探测器
IF 11 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-02-09 DOI: 10.1002/lpor.202502956
Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen
The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.
窄带光信号的检测能力在光通信、精确目标识别等方面具有重要意义。本研究提出了一种基于单个器件光电特性协同调节的双窄带可见光/近红外增益检测方法。该器件集成了两个不同的体异质结(bhj),一个具有可见光吸收,另一个具有近红外吸收,在背靠背结构中。该设计通过调节外部电路的载流子注入来控制光电倍增,实现了可调偏的可见光/近红外双波段检测。此外,通过结合光学微腔来调制光场分布,实现了可调谐的可见光/近红外双窄带光探测,并能够通过改变偏压的极性来切换两个波长。例如,在450 nm和810 nm处实现窄带响应,其中两种模式可以通过改变偏置极性来切换。在450nm处获得1050%的峰值外量子效率(EQE)和50nm的全宽半宽(FWHM)。在810 nm处观察到峰值EQE为130%,FWHM为75 nm。值得注意的是,该器件在抗干扰光通信方面表现出色,无需额外的光滤波器即可运行。
{"title":"Tunable Visible/NIR Dual-Narrowband Organic Photodetectors with Photomultiplication for Interference-Resistant Optical Communication","authors":"Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen","doi":"10.1002/lpor.202502956","DOIUrl":"https://doi.org/10.1002/lpor.202502956","url":null,"abstract":"The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The (higher) Hamiltonians of (generalized) trigonometric and rational Calogero-Sutherland models by MO R-matrix 由MO r -矩阵的(广义)三角和有理Calogero-Sutherland模型的(高)哈密顿量
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140265
Yue Li, Fan Liu, Rui Wang, Jie Yang
By using the integrable lattice model proposed by Maulik and Okounkov, we derive the (higher) Hamiltonians of the (generalized) trigonometric Calogero-Sutherland models. Then in terms of these (higher) Hamiltonians, we further construct certain nested structures and derive the commutative operators which coincide with the (higher) Hamiltonians of the (generalized) rational Calogero-Sutherland models.
利用Maulik和Okounkov提出的可积点阵模型,导出了(广义)三角Calogero-Sutherland模型的(高)哈密顿量。然后,根据这些(高)哈密顿量,我们进一步构造了某些嵌套结构,并推导出与(广义)有理Calogero-Sutherland模型的(高)哈密顿量相吻合的交换算子。
{"title":"The (higher) Hamiltonians of (generalized) trigonometric and rational Calogero-Sutherland models by MO R-matrix","authors":"Yue Li, Fan Liu, Rui Wang, Jie Yang","doi":"10.1016/j.physletb.2026.140265","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140265","url":null,"abstract":"By using the integrable lattice model proposed by Maulik and Okounkov, we derive the (higher) Hamiltonians of the (generalized) trigonometric Calogero-Sutherland models. Then in terms of these (higher) Hamiltonians, we further construct certain nested structures and derive the commutative operators which coincide with the (higher) Hamiltonians of the (generalized) rational Calogero-Sutherland models.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"2 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bias-Free Functional Terahertz Photoconductive Emitter 无偏置功能太赫兹光导发射器
IF 7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.1021/acsphotonics.5c02612
Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han
The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.
在生成过程中雕刻太赫兹(THz)波前的能力对于通信和成像应用至关重要。然而,相关的器件,即具有波前调制能力的功能性太赫兹发射器,仍然很少。在这里,我们提出了一种基于双金属天线的无偏光导太赫兹发射器直接产生特定太赫兹波前的方法。发射的太赫兹辐射是由横向肖特基势垒(LS)和横向光-登伯效应(LPD)驱动的漂移电流产生的。同时,通过精确设计天线的几何参数和方向,我们实现了对发射太赫兹波的幅度和相位的连续控制,从而允许对太赫兹波前进行灵活控制。我们的方法实现了宽带太赫兹波前控制,设计简单,制造成本低,适合大面积处理。
{"title":"Bias-Free Functional Terahertz Photoconductive Emitter","authors":"Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han","doi":"10.1021/acsphotonics.5c02612","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02612","url":null,"abstract":"The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"35 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebra of operators for Q-Schur polynomials Q-Schur多项式的算子代数
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140259
Nikita Tselousov
We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.
我们考虑作用于Schur和Q-Schur多项式上的代数,对应于Kadomtsev-Petviashvili (KP)和BKP层次。我们以仿射杨算子的精神来介绍它们,特别注意交换子代数、特征值的盒可加性和算子的单钩展开。
{"title":"Algebra of operators for Q-Schur polynomials","authors":"Nikita Tselousov","doi":"10.1016/j.physletb.2026.140259","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140259","url":null,"abstract":"We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"51 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Photonics J. Biophotonics Laser Photonics Rev. Comput. Phys. Commun. J. Comput. Phys. Prog. Part. Nucl. Phys. Prog. Quantum Electron. Solid State Commun. IEEE Trans. Plasma Sci. Acoust. Phys. Appl. Magn. Reson. Astrophys. Bull. ASTROPHYSICS+ Braz. J. Phys. B LEBEDEV PHYS INST+ Commun. Math. Phys. Dokl. Phys. EPJ QUANTUM TECHNOL Exp. Astron. Few-Body Syst. Found. Phys. FRONT PHYS-BEIJING Gen. Relativ. Gravitation Indian J. Phys. Int. J. Theor. Phys. Jetp Lett. J. Astrophys. Astron. J CONTEMP PHYS-ARME+ J. Exp. Theor. Phys. J. High Energy Phys. J. Low Temp. Phys. J. Russ. Laser Res. J. Stat. Phys. J. Supercond. Novel Magn. J KOREAN PHYS SOC Kinematics Phys. Celestial Bodies Lett. Math. Phys. Living Rev. Relativ. Living Rev. Sol. Phys. Moscow Univ. Phys. Bull. Opt. Rev. Opt. Spectrosc. Phys. At. Nucl. Phys. Part. Nucl. Phys. Solid State PHYS WAVE PHENOM Plasma Phys. Rep. Plasmonics Quantum Inf. Process. Russ. J. Math. Phys. Russ. Phys. J. SCI CHINA PHYS MECH Sol. Phys. Sol. Syst. Res. Tech. Phys. Tech. Phys. Lett. Theor. Math. Phys. ACTA PHYS SIN-CH ED Acta Phys. Pol. B 光学学报 光子学报 Acta Phys. Pol. A Adv. Phys. ADV PHYS-X Adv. Condens. Matter Phys. Adv. High Energy Phys. Am. J. Phys. Ann. Phys. Annu. Rev. Condens. Matter Phys. Annu. Rev. Nucl. Part. Sci. Appl. Phys. Express Appl. Phys. Lett. Annu. Rev. Astron. Astrophys. ARCH ACOUST APL Photonics Appl. Phys. Rev. Ann. Phys. ASTRON ASTROPHYS Astrophys. J. Suppl. Ser. Astrophys. Space Sci. ASTROBIOLOGY Can. J. Phys. 液晶与显示 Chin. Phys. C Chin. Phys. B Classical Quantum Gravity CHIN OPT LETT Chin. J. Phys. Chin. Phys. Lett. Condens. Matter Phys. Commun. Phys. Commun. Theor. Phys. Contrib. Plasma Phys. Curr. Appl Phys. ENTROPY-SWITZ EPL-EUROPHYS LETT EUR PHYS J-SPEC TOP EUR PHYS J-APPL PHYS Front. Phys. High Pressure Res.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1