Quantum gravity has been baffling the theoretical physicist for decades now, both for its mathematical obscurity and phenomenological testing. Nevertheless, the new era of precision cosmology presents a promising avenue to test the effects of quantum gravity. In this study, we consider a bottom-up approach. Without resorting to any candidate quantum gravity, we invoke a generalized uncertainty principle (GUP) directly into the cosmological Hamiltonian for a universe sourced by a phantom scalar field with potential to study the evolution of the universe in a very early epoch. This is followed by a systematic analysis of the dynamics, both qualitatively and quantitatively. Our qualitative analysis shows that the introduction of GUP significantly alters the existence of fixed points for the potential considered in this paper. In addition, we confirm the existence of an inflationary phase and analyze the behavior of relevant cosmological parameters with respect to the strength of the GUP distortion.
In this study, we present an all-optical image reconstruction technique leveraging a diffractive deep neural network (D2NN) within a ring-core fiber (RCF) architecture. Orbital angular momentum (OAM) modes are employed to facilitate imaging transmission. We experimentally validate the efficacy of our approach for complex field diffractive image reconstruction through a multimode fiber (MMF) and RCF at a 1550 nm operating wavelength. The experimental results demonstrate the superior performance of the proposed method in mitigating RCF scattering-to-restoration transformation issues, significantly outperforming traditional MMF-based imaging correction techniques.