Pub Date : 2026-02-09DOI: 10.22331/q-2026-02-09-2001
Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen
Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.
{"title":"Minimising the number of edges in LC-equivalent graph states","authors":"Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen","doi":"10.22331/q-2026-02-09-2001","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-2001","url":null,"abstract":"Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"9 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen
The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.
{"title":"Tunable Visible/NIR Dual-Narrowband Organic Photodetectors with Photomultiplication for Interference-Resistant Optical Communication","authors":"Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen","doi":"10.1002/lpor.202502956","DOIUrl":"https://doi.org/10.1002/lpor.202502956","url":null,"abstract":"The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1038/s42254-026-00920-1
As chatbots become more ubiquitous in our everyday lives, we remind our readers that good writing comes from knowing what you want to say.
随着聊天机器人在我们的日常生活中变得越来越普遍,我们提醒我们的读者,好的写作来自于知道你想说什么。
{"title":"Writing in the age of chatbots","authors":"","doi":"10.1038/s42254-026-00920-1","DOIUrl":"10.1038/s42254-026-00920-1","url":null,"abstract":"As chatbots become more ubiquitous in our everyday lives, we remind our readers that good writing comes from knowing what you want to say.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 2","pages":"65-65"},"PeriodicalIF":39.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-026-00920-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1021/acsphotonics.5c02612
Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han
The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.
{"title":"Bias-Free Functional Terahertz Photoconductive Emitter","authors":"Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han","doi":"10.1021/acsphotonics.5c02612","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02612","url":null,"abstract":"The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"35 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1016/j.physletb.2026.140259
Nikita Tselousov
We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.
{"title":"Algebra of operators for Q-Schur polynomials","authors":"Nikita Tselousov","doi":"10.1016/j.physletb.2026.140259","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140259","url":null,"abstract":"We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"51 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1016/j.physletb.2026.140252
ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, ZUL. Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelshäuser, S. Arcelli, R. Arnaldi, J.G.M.C.A. Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, M.D. Azmi, H. Baba, A.R.J. Babu, A. Badalà, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaföldi, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, L.G.E. Beltran, Y.A.V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y.E.M. Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M.F.T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, P. Camerini, M.T. Camerlingo, F.D.M. Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L.A.D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J.W.O. Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, T. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, G. Clai, F. Colamaria, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G.G.A. de Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divia, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, A. Feliciello, G. Feofilov, A. Fernández Téllez, L. Ferrandi, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M.B. Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Glässel, E. Glimos, V. Gonzalez, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, S. Gross-Bölting, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, J. Haidenbauer, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, A. Hasan, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I.P.M. Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, M. Ivanov, M. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, E.P. Jamro, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A.A.P. Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, A. Kalinak, A. Kalweit, Y. Kamiya, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, J.T. Kinner, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M.B. Knuesel, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, A. Kuznetsov, M.J. Kweon, Y. Kwon, S.L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, E. Laudi, L. Lautner, R.A.N. Laveaga, R. Lavicka, R. Lea, J.B. Lebert, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G.S.S. Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, O. Lubynets, F.V. Lugo, J. Luo, G. Luparello, M.A.T. Johnson, J.M. Friedrich, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, R.S. Manhart, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M.P.P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, A. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, J.L. Mayo, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J.E.M. Mendez, E. Meninno, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miškowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, J.S. Potgieter, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Pulawski, L. Quaglia, A.M.K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-Álvarez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, A. Rustamov, Y. Ryabov, A. Rybicki, L.C.V. Ryder, G. Ryu, J. Ryu, W. Rzesa, B. Sabiu, R. Sadek, S. Sadhu, S. Sadovsky, A. Saha, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, U. Savino, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, W.D. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R.J.M. Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, C. Sporleder, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, A.A.P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L.V.R. van Doremalen, M. van Leeuwen, C.A. van Veen, R.J.G. van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M.M.O. Virta, A. Vodopyanov, M.A. Völkl, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, J. Witte, M. Wojnar, J.R. Wright, C.-T. Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K. Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, A. Zingaretti, S.C. Zugravel, N. Zurlo
In this letter, the first measurement of the femtoscopic correlation of protons and Σ+ hyperons is presented and used to study the p–Σ+ interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at s=13 TeV. The Σ+ hyperons are reconstructed using a missing-mass approach in the decay channel to p+π0 with π0→γγ, while both Σ+ and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p–Σ+ correlation function for the first time. Thanks to the high significance achieved in the p–Σ+ correlation signal, it is possible to discriminate between the predictions of different models of the N–Σ interaction and to accomplish a first determination of the p–Σ+ scattering parameters.
{"title":"Measurement of the p–[formula omitted] correlation function in pp collisions at [formula omitted] TeV","authors":"ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, ZUL. Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelshäuser, S. Arcelli, R. Arnaldi, J.G.M.C.A. Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, M.D. Azmi, H. Baba, A.R.J. Babu, A. Badalà, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaföldi, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, L.G.E. Beltran, Y.A.V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y.E.M. Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M.F.T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, P. Camerini, M.T. Camerlingo, F.D.M. Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L.A.D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J.W.O. Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, T. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, G. Clai, F. Colamaria, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G.G.A. de Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divia, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, A. Feliciello, G. Feofilov, A. Fernández Téllez, L. Ferrandi, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M.B. Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Glässel, E. Glimos, V. Gonzalez, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, S. Gross-Bölting, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, J. Haidenbauer, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, A. Hasan, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I.P.M. Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, M. Ivanov, M. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, E.P. Jamro, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A.A.P. Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, A. Kalinak, A. Kalweit, Y. Kamiya, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, J.T. Kinner, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M.B. Knuesel, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, A. Kuznetsov, M.J. Kweon, Y. Kwon, S.L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, E. Laudi, L. Lautner, R.A.N. Laveaga, R. Lavicka, R. Lea, J.B. Lebert, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G.S.S. Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, O. Lubynets, F.V. Lugo, J. Luo, G. Luparello, M.A.T. Johnson, J.M. Friedrich, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, R.S. Manhart, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M.P.P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, A. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, J.L. Mayo, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J.E.M. Mendez, E. Meninno, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miškowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, J.S. Potgieter, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Pulawski, L. Quaglia, A.M.K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-Álvarez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, A. Rustamov, Y. Ryabov, A. Rybicki, L.C.V. Ryder, G. Ryu, J. Ryu, W. Rzesa, B. Sabiu, R. Sadek, S. Sadhu, S. Sadovsky, A. Saha, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, U. Savino, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, W.D. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R.J.M. Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, C. Sporleder, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, A.A.P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L.V.R. van Doremalen, M. van Leeuwen, C.A. van Veen, R.J.G. van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M.M.O. Virta, A. Vodopyanov, M.A. Völkl, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, J. Witte, M. Wojnar, J.R. Wright, C.-T. Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K. Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, A. Zingaretti, S.C. Zugravel, N. Zurlo","doi":"10.1016/j.physletb.2026.140252","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140252","url":null,"abstract":"In this letter, the first measurement of the femtoscopic correlation of protons and <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> hyperons is presented and used to study the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at <mml:math altimg=\"si3.svg\"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV. The <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> hyperons are reconstructed using a missing-mass approach in the decay channel to <mml:math altimg=\"si28.svg\"><mml:mrow><mml:mi mathvariant=\"normal\">p</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:msup><mml:mi>π</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:mrow></mml:math> with <mml:math altimg=\"si29.svg\"><mml:mrow><mml:msup><mml:mi>π</mml:mi><mml:mn>0</mml:mn></mml:msup><mml:mo>→</mml:mo><mml:mi>γ</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math>, while both <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> correlation function for the first time. Thanks to the high significance achieved in the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> correlation signal, it is possible to discriminate between the predictions of different models of the N–Σ interaction and to accomplish a first determination of the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> scattering parameters.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"93 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.22331/q-2026-02-09-1998
Dylan Laplace Mermoud, Andrea Simonetto, Sourour Elloumi
We present a quantum variational algorithm based on a novel circuit that generates all permutations that can be spanned by one- and two-qubits permutation gates. The construction of the circuits follows from group-theoretical results, most importantly the Bruhat decomposition of the group generated by the cx gates. These circuits require a number of qubits that scale logarithmically with the permutation dimension, and are therefore employable in near-term applications. We further augment the circuits with ancilla qubits to enlarge their span, and with these we build ansatze to tackle permutation-based optimization problems such as quadratic assignment problems, and graph isomorphisms. The resulting quantum algorithm, QuPer, is competitive with respect to classical heuristics and we could simulate its behavior up to a problem with 256 variables, requiring 20 qubits.
{"title":"Variational quantum algorithms for permutation-based combinatorial problems: Optimal ansatz generation with applications to quadratic assignment problems and beyond","authors":"Dylan Laplace Mermoud, Andrea Simonetto, Sourour Elloumi","doi":"10.22331/q-2026-02-09-1998","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-1998","url":null,"abstract":"We present a quantum variational algorithm based on a novel circuit that generates all permutations that can be spanned by one- and two-qubits permutation gates. The construction of the circuits follows from group-theoretical results, most importantly the Bruhat decomposition of the group generated by the cx gates. These circuits require a number of qubits that scale logarithmically with the permutation dimension, and are therefore employable in near-term applications. We further augment the circuits with ancilla qubits to enlarge their span, and with these we build ansatze to tackle permutation-based optimization problems such as quadratic assignment problems, and graph isomorphisms. The resulting quantum algorithm, QuPer, is competitive with respect to classical heuristics and we could simulate its behavior up to a problem with 256 variables, requiring 20 qubits.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"33 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate chaotic dynamics in extremal black holes by analyzing the motion of massless particles in both Reissner-Nordström and Kerr geometries. Two complementary approaches (i) taking the extremal limit of non-extremal solutions and (ii) working directly in the extremal background, yield consistent results. We find that, contrary to naive extrapolation of the Maldacena-Shenker-Stanford (MSS) chaos bound, the Lyapunov exponent remains positive even at zero temperature. For Reissner-Nordström black holes, chaos diminishes but persists at extremality, while for Kerr black holes it strengthens with increasing spin. These results demonstrate that extremal black holes exhibit residual chaotic dynamics that violate the MSS bound, establishing them as qualitatively distinct dynamical phases of gravity.
{"title":"Chaotic Dynamics in Extremal Black Holes: A Challenge to the Chaos Bound","authors":"Surojit Dalui, Chiranjeeb Singha, Krishnakanta Bhattacharya","doi":"10.1016/j.physletb.2026.140256","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140256","url":null,"abstract":"We investigate chaotic dynamics in extremal black holes by analyzing the motion of massless particles in both Reissner-Nordström and Kerr geometries. Two complementary approaches (i) taking the extremal limit of non-extremal solutions and (ii) working directly in the extremal background, yield consistent results. We find that, contrary to naive extrapolation of the Maldacena-Shenker-Stanford (MSS) chaos bound, the Lyapunov exponent remains positive even at zero temperature. For Reissner-Nordström black holes, chaos diminishes but persists at extremality, while for Kerr black holes it strengthens with increasing spin. These results demonstrate that extremal black holes exhibit residual chaotic dynamics that violate the MSS bound, establishing them as qualitatively distinct dynamical phases of gravity.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"60 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1051/0004-6361/202556235
M. De Leo, M. Zoccali, J. Olivares-Carvajal, B. Acosta-Tripailao, F. Gran, R. Contreras-Ramos
Context. In hierarchical structure formation, the content of a galaxy is determined both by its in-situ processes and by material added via accretions. Globular clusters, in particular, represent a window into the study of the different merger events that a galaxy has undergone. Establishing the correct classification of in-situ and accreted tracers, and distinguishing the various progenitors that contributed to the accreted population are important tools to deepen our understanding of galactic formation and evolution.Aims. This study aims to refine our knowledge of the Milky Way’s assembly history by examining the dynamics of its globular cluster population and establishing an updated classification among in-situ objects and the different merger events identified.Methods. We used a custom-built orbit integrator to derive precise orbital parameters, integrals of motions and adiabatic invariants for the globular cluster sample studied. By properly accounting for the rotating bar, which transforms the underlying model into a time-varying potential, we performed a complete dynamical characterisation of the globular clusters.Results. We present a new catalogue of clear associations between globular clusters and structures (both in-situ and accreted) in the Milky Way, along with a full table of derived parameters. Using all available dynamical information, we attributed previously unassociated or misclassified globular clusters to different progenitors, including those responsible for the Aleph, Antaeus, Cetus, Elqui, and Typhon merger events.Conclusions. Using a custom-built orbit integrator and properly accounting for the time-varying nature of the Milky Way potential, we demonstrate the depth of information that can be extracted from a purely dynamical analysis of the Galaxy’s globular clusters. Merging our dynamical analysis with complementary chronochemical studies, will allow us to uncover the remaining secrets of the accretion history of the Milky Way.
{"title":"Globular clusters in ORBIT: Complete dynamical characterisation of the Milky Way globular cluster population through updated orbital reconstruction","authors":"M. De Leo, M. Zoccali, J. Olivares-Carvajal, B. Acosta-Tripailao, F. Gran, R. Contreras-Ramos","doi":"10.1051/0004-6361/202556235","DOIUrl":"https://doi.org/10.1051/0004-6361/202556235","url":null,"abstract":"<i>Context<i/>. In hierarchical structure formation, the content of a galaxy is determined both by its in-situ processes and by material added via accretions. Globular clusters, in particular, represent a window into the study of the different merger events that a galaxy has undergone. Establishing the correct classification of in-situ and accreted tracers, and distinguishing the various progenitors that contributed to the accreted population are important tools to deepen our understanding of galactic formation and evolution.<i>Aims<i/>. This study aims to refine our knowledge of the Milky Way’s assembly history by examining the dynamics of its globular cluster population and establishing an updated classification among in-situ objects and the different merger events identified.<i>Methods<i/>. We used a custom-built orbit integrator to derive precise orbital parameters, integrals of motions and adiabatic invariants for the globular cluster sample studied. By properly accounting for the rotating bar, which transforms the underlying model into a time-varying potential, we performed a complete dynamical characterisation of the globular clusters.<i>Results<i/>. We present a new catalogue of clear associations between globular clusters and structures (both in-situ and accreted) in the Milky Way, along with a full table of derived parameters. Using all available dynamical information, we attributed previously unassociated or misclassified globular clusters to different progenitors, including those responsible for the Aleph, Antaeus, Cetus, Elqui, and Typhon merger events.<i>Conclusions<i/>. Using a custom-built orbit integrator and properly accounting for the time-varying nature of the Milky Way potential, we demonstrate the depth of information that can be extracted from a purely dynamical analysis of the Galaxy’s globular clusters. Merging our dynamical analysis with complementary chronochemical studies, will allow us to uncover the remaining secrets of the accretion history of the Milky Way.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"9 1","pages":""},"PeriodicalIF":6.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1088/1361-6382/ae3e4b
Dipayan Mukherjee, Harkirat Singh Sahota and S Shankaranarayanan
Building upon our recently established correspondence between quantum cosmology and the hydrogen atom (Sahota et al 2025 arXiv:2505.16863 [gr-qc]), we investigate the specific sector of a negative cosmological constant ( ) in a flat FLRW Universe with dust. While the positive Λ sector (Sahota et al 2025 arXiv:2505.16863 [gr-qc]) yields a continuous spectrum and a single bounce, we show here that the negative Λ sector leads to a discrete spectrum of energy eigenvalues, effectively quantizing the cosmological constant. Within this dual description, the operator-ordering ambiguity parameter appears as the azimuthal quantum number of the hydrogen atom. A skewed Bohr correspondence emerges for the bound states, matching classical evolution at large volumes but deviating near the bounce. By constructing wave packets from these bound states, we demonstrate that the classical Big Bang and Big Crunch singularities are resolved, and the Universe oscillates between quantum bounces and classical turnaround points. The expectation values of the observables indicate a cyclic Universe—with vanishing Hubble parameter at turnarounds—undergoing quantum bounces. This exactly solvable model offers a tractable setting to explore quantum gravitational effects in cosmology. We analyze the properties of this cyclic Universe, contrasting its bound-state dynamics with the scattering states of the de Sitter case.
基于我们最近建立的量子宇宙学和氢原子之间的对应关系(Sahota et al 2025 arXiv:2505.16863 [gr-qc]),我们研究了一个平坦的FLRW宇宙中负宇宙常数()的特定部分。当正的Λ扇区(Sahota et al 2025 arXiv:2505.16863 [gr-qc])产生连续光谱和单一反弹时,我们在这里表明负的Λ扇区导致能量特征值的离散谱,有效地量化了宇宙常数。在这种对偶描述中,算子序模糊参数表现为氢原子的方位量子数。束缚态出现了扭曲的玻尔对应,在大体积下与经典演化相匹配,但在弹跳附近偏离。通过从这些束缚态构造波包,我们证明了经典的大爆炸和大压缩奇点是解决的,宇宙在量子弹跳和经典周转点之间振荡。可观测值的期望值表明,一个循环的宇宙正在经历量子反弹,而哈勃参数在转弯时消失。这个完全可解的模型为探索宇宙学中的量子引力效应提供了一个易于处理的环境。我们分析了这个循环宇宙的性质,对比了它的束缚态动力学和de Sitter情况下的散射态。
{"title":"Quantum cosmology as a hydrogen atom: discrete Λ and cyclic universes from Wheeler–DeWitt quantization","authors":"Dipayan Mukherjee, Harkirat Singh Sahota and S Shankaranarayanan","doi":"10.1088/1361-6382/ae3e4b","DOIUrl":"https://doi.org/10.1088/1361-6382/ae3e4b","url":null,"abstract":"Building upon our recently established correspondence between quantum cosmology and the hydrogen atom (Sahota et al 2025 arXiv:2505.16863 [gr-qc]), we investigate the specific sector of a negative cosmological constant ( ) in a flat FLRW Universe with dust. While the positive Λ sector (Sahota et al 2025 arXiv:2505.16863 [gr-qc]) yields a continuous spectrum and a single bounce, we show here that the negative Λ sector leads to a discrete spectrum of energy eigenvalues, effectively quantizing the cosmological constant. Within this dual description, the operator-ordering ambiguity parameter appears as the azimuthal quantum number of the hydrogen atom. A skewed Bohr correspondence emerges for the bound states, matching classical evolution at large volumes but deviating near the bounce. By constructing wave packets from these bound states, we demonstrate that the classical Big Bang and Big Crunch singularities are resolved, and the Universe oscillates between quantum bounces and classical turnaround points. The expectation values of the observables indicate a cyclic Universe—with vanishing Hubble parameter at turnarounds—undergoing quantum bounces. This exactly solvable model offers a tractable setting to explore quantum gravitational effects in cosmology. We analyze the properties of this cyclic Universe, contrasting its bound-state dynamics with the scattering states of the de Sitter case.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"4 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}