首页 > 最新文献

物理与天体物理最新文献

英文 中文
IF:
Sub-Terahertz Broadband Polarization-Reconfigurable Radiation Based on Spoof Surface Plasmon Polaritons 基于欺骗表面等离子激元的亚太赫兹宽带偏振可重构辐射
IF 11 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-02-09 DOI: 10.1002/lpor.202502111
Zhi-Jun Qin, Zhao-Hua Xu, Hui Zheng, Ya-Qi Song, Hang Ren, Wen-Ya Wang, Hong Chen, Jia-Jun Liang, Xiao-Liang Ge, Guan-Long Huang, Su Xu
Manipulating circular-, elliptical-, and linear- polarization states of radiation and enhancing the matching efficiency between radiators and receivers/detectors, emerges as a cornerstone technology for achieving high-quality wireless communications and radar detections. However, reconfiguring these polarization states freely in the chip is still an open challenge over the sub-terahertz (sub-THz) band. Here, we achieve broadband sub-THz polarization-reconfigurable on-chip radiation based on a spoof surface plasmon polaritons (SSPPs) platform. By modulating the asymmetric near-field coupling between the SSPP waveguide and scatter arrays, continuous adjustment of the axial ratio is observed numerically from 1 to 40 dB, enabling the flexible switching among all three classes of polarization states. The experiment also demonstrates this powerful dynamic polarization switching functionality. Our work broadens on-chip dynamic manipulation of sub-THz and THz waves and may also open an avenue to secure communication, satellite networks, and local data-center interconnects.
控制辐射的圆形、椭圆形和线性极化状态,提高辐射器和接收器/探测器之间的匹配效率,是实现高质量无线通信和雷达探测的基础技术。然而,在亚太赫兹(sub-THz)波段,在芯片中自由地重新配置这些极化状态仍然是一个公开的挑战。在这里,我们基于欺骗表面等离子激元(SSPPs)平台实现了宽带亚太赫兹极化可重构片上辐射。通过调制SSPP波导与散射阵列之间的非对称近场耦合,可以在数值范围内观察到轴比在1到40 dB之间的连续调节,从而实现三种偏振状态之间的灵活切换。实验也证明了这种强大的动态极化开关功能。我们的工作拓宽了亚太赫兹和太赫兹波的片上动态操作,也可能为安全通信、卫星网络和本地数据中心互连开辟一条途径。
{"title":"Sub-Terahertz Broadband Polarization-Reconfigurable Radiation Based on Spoof Surface Plasmon Polaritons","authors":"Zhi-Jun Qin, Zhao-Hua Xu, Hui Zheng, Ya-Qi Song, Hang Ren, Wen-Ya Wang, Hong Chen, Jia-Jun Liang, Xiao-Liang Ge, Guan-Long Huang, Su Xu","doi":"10.1002/lpor.202502111","DOIUrl":"https://doi.org/10.1002/lpor.202502111","url":null,"abstract":"Manipulating circular-, elliptical-, and linear- polarization states of radiation and enhancing the matching efficiency between radiators and receivers/detectors, emerges as a cornerstone technology for achieving high-quality wireless communications and radar detections. However, reconfiguring these polarization states freely in the chip is still an open challenge over the sub-terahertz (sub-THz) band. Here, we achieve broadband sub-THz polarization-reconfigurable on-chip radiation based on a spoof surface plasmon polaritons (SSPPs) platform. By modulating the asymmetric near-field coupling between the SSPP waveguide and scatter arrays, continuous adjustment of the axial ratio is observed numerically from 1 to 40 dB, enabling the flexible switching among all three classes of polarization states. The experiment also demonstrates this powerful dynamic polarization switching functionality. Our work broadens on-chip dynamic manipulation of sub-THz and THz waves and may also open an avenue to secure communication, satellite networks, and local data-center interconnects.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"198 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trotter error and gate complexity of the SYK and sparse SYK models SYK和稀疏SYK模型的踏步误差和门复杂度
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-1999
Yiyuan Chen, Jonas Helsen, Maris Ozols
The Sachdev–Ye–Kitaev (SYK) model is a prominent model of strongly interacting fermions that serves as a toy model of quantum gravity and black hole physics. In this work, we study the Trotter error and gate complexity of the quantum simulation of the SYK model using Lie–Trotter–Suzuki formulas. Building on recent results by Chen and Brandão [6] — in particular their uniform smoothing technique for random matrix polynomials — we derive bounds on the first- and higher-order Trotter error of the SYK model, and subsequently find near-optimal gate complexities for simulating these models using Lie–Trotter–Suzuki formulas. For the $k$-local SYK model on $n$ Majorana fermions, at time $t$, our gate complexity estimates for the first-order Lie–Trotter–Suzuki formula scales with $tilde{mathcal{O}}(n^{k+frac{5}{2}}t^2)$ for even $k$ and $tilde{mathcal{O}}(n^{k+3}t^2)$ for odd $k$, and the gate complexity of simulations using higher-order formulas scales with $tilde{mathcal{O}}(n^{k+frac{1}{2}}t)$ for even $k$ and $tilde{mathcal{O}}(n^{k+1}t)$ for odd $k$. Given that the SYK model has $Theta(n^k)$ terms, these estimates are close to optimal. These gate complexities can be further improved upon in the context of simulating the time evolution of an arbitrary fixed input state $|psirangle$, leading to a $mathcal{O}(n^2)$-reduction in gate complexity for first-order formulas and $mathcal{O}(sqrt{n})$-reduction for higher-order formulas.

We also apply our techniques to the sparse SYK model, which is a simplified variant of the SYK model obtained by deleting all but a $Theta(n)$ fraction of the terms in a uniformly i.i.d. manner. We find the average (over the random term removal) gate complexity for simulating this model using higher-order formulas scales with $tilde{mathcal{O}}(n^{1+frac{1}{2}} t)$ for even $k$ and $tilde{mathcal{O}}(n^{2} t)$ for odd $k$. Similar to the full SYK model, we obtain a $mathcal{O}(sqrt{n})$-reduction simulating the time evolution of an arbitrary fixed input state $|psirangle$.

Our results highlight the potential of Lie–Trotter–Suzuki formulas for efficiently simulating the SYK and sparse SYK models, and our analytical methods can be naturally extended to other Gaussian random Hamiltonians.
Sachdev-Ye-Kitaev (SYK)模型是一个突出的强相互作用费米子模型,作为量子引力和黑洞物理的玩具模型。在这项工作中,我们使用Lie-Trotter-Suzuki公式研究了SYK模型的量子模拟的Trotter误差和门复杂度。基于Chen和brand b[6]最近的结果——特别是他们对随机矩阵多项式的均匀平滑技术——我们推导了SYK模型的一阶和高阶Trotter误差的界限,并随后找到了使用Lie-Trotter-Suzuki公式模拟这些模型的近最优门复杂度。对于$n$ Majorana fermions上的$k$ -local SYK模型,在$t$时刻,我们用$tilde{mathcal{O}}(n^{k+frac{5}{2}}t^2)$对偶$k$和$tilde{mathcal{O}}(n^{k+3}t^2)$对奇数$k$估计了一阶Lie-Trotter-Suzuki公式尺度下的门复杂度,以及用$tilde{mathcal{O}}(n^{k+frac{1}{2}}t)$对偶$k$和$tilde{mathcal{O}}(n^{k+1}t)$对奇数$k$模拟的门复杂度。考虑到SYK模型有$Theta(n^k)$项,这些估计接近于最优。在模拟任意固定输入状态$|psirangle$的时间演化的背景下,这些门的复杂性可以得到进一步改进,导致一阶公式的门的复杂性降低$mathcal{O}(n^2)$ -,高阶公式的门的复杂性降低$mathcal{O}(sqrt{n})$ -。我们还将我们的技术应用于稀疏SYK模型,该模型是SYK模型的简化变体,通过以统一的i.i.d方式删除除$Theta(n)$部分以外的所有项而获得。我们发现使用高阶公式模拟该模型的平均(在随机项去除之上)门复杂度为$tilde{mathcal{O}}(n^{1+frac{1}{2}} t)$表示偶数$k$, $tilde{mathcal{O}}(n^{2} t)$表示奇数$k$。与完整的SYK模型类似,我们得到了一个模拟任意固定输入状态$|psirangle$的时间演化的$mathcal{O}(sqrt{n})$ -约简。我们的结果突出了Lie-Trotter-Suzuki公式在有效模拟SYK和稀疏SYK模型方面的潜力,并且我们的分析方法可以自然地扩展到其他高斯随机哈密顿量。
{"title":"Trotter error and gate complexity of the SYK and sparse SYK models","authors":"Yiyuan Chen, Jonas Helsen, Maris Ozols","doi":"10.22331/q-2026-02-09-1999","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-1999","url":null,"abstract":"The Sachdev–Ye–Kitaev (SYK) model is a prominent model of strongly interacting fermions that serves as a toy model of quantum gravity and black hole physics. In this work, we study the Trotter error and gate complexity of the quantum simulation of the SYK model using Lie–Trotter–Suzuki formulas. Building on recent results by Chen and Brandão [6] — in particular their uniform smoothing technique for random matrix polynomials — we derive bounds on the first- and higher-order Trotter error of the SYK model, and subsequently find near-optimal gate complexities for simulating these models using Lie–Trotter–Suzuki formulas. For the $k$-local SYK model on $n$ Majorana fermions, at time $t$, our gate complexity estimates for the first-order Lie–Trotter–Suzuki formula scales with $tilde{mathcal{O}}(n^{k+frac{5}{2}}t^2)$ for even $k$ and $tilde{mathcal{O}}(n^{k+3}t^2)$ for odd $k$, and the gate complexity of simulations using higher-order formulas scales with $tilde{mathcal{O}}(n^{k+frac{1}{2}}t)$ for even $k$ and $tilde{mathcal{O}}(n^{k+1}t)$ for odd $k$. Given that the SYK model has $Theta(n^k)$ terms, these estimates are close to optimal. These gate complexities can be further improved upon in the context of simulating the time evolution of an arbitrary fixed input state $|psirangle$, leading to a $mathcal{O}(n^2)$-reduction in gate complexity for first-order formulas and $mathcal{O}(sqrt{n})$-reduction for higher-order formulas.<br/>\u0000<br/> We also apply our techniques to the sparse SYK model, which is a simplified variant of the SYK model obtained by deleting all but a $Theta(n)$ fraction of the terms in a uniformly i.i.d. manner. We find the average (over the random term removal) gate complexity for simulating this model using higher-order formulas scales with $tilde{mathcal{O}}(n^{1+frac{1}{2}} t)$ for even $k$ and $tilde{mathcal{O}}(n^{2} t)$ for odd $k$. Similar to the full SYK model, we obtain a $mathcal{O}(sqrt{n})$-reduction simulating the time evolution of an arbitrary fixed input state $|psirangle$.<br/>\u0000<br/> Our results highlight the potential of Lie–Trotter–Suzuki formulas for efficiently simulating the SYK and sparse SYK models, and our analytical methods can be naturally extended to other Gaussian random Hamiltonians.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"18 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circular Dichroism without Absorption in Isolated Chiral Dielectric Mie Particles 孤立手性介电Mie粒子无吸收的圆二色性
IF 7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.1021/acsphotonics.5c02076
Rafael S. Dutra,Felipe A. Pinheiro,Diney S. Ether Jr.,Cyriaque Genet,Nathan B. Viana,Paulo A. Maia Neto
We demonstrate that an effect phenomenologically analogous to circular dichroism can arise even for dielectric and isotropic chiral spherical particles. By analyzing the polarimetry of light scattered from a chiral, lossless microsphere illuminated with linearly polarized light, we show that the scattered light becomes nearly circularly polarized, exhibiting large nonresonant values of the Stokes parameter S3 for a broad range of visible frequencies. This phenomenon occurs only in the Mie regime, with the microsphere radius comparable to the wavelength, and provided that the scattered light is collected by a high-NA objective lens, including nonparaxial Fourier components. Altogether, our findings offer a theoretical framework and motivation for an experimental demonstration of a novel chiroptical effect with isolated dielectric particles, with potential applications in enantioselection and characterization of single microparticles, each and every one with its own chiral response.
我们证明了一种现象上类似于圆二色性的效应甚至可以出现在介电性和各向同性手性球形粒子中。通过分析线偏振光照射下的手性无损微球散射光的偏振特性,我们发现散射光变得接近圆偏振,在很宽的可见频率范围内表现出很大的Stokes参数S3的非共振值。这种现象只发生在Mie状态下,微球半径与波长相当,并且散射光由高na物镜收集,包括非傍轴傅立叶分量。总之,我们的发现提供了一个理论框架和动机,实验证明了一种新的手性效应与孤立的介电粒子,具有潜在的应用在单个微粒的对映体选择和表征,每一个都有自己的手性响应。
{"title":"Circular Dichroism without Absorption in Isolated Chiral Dielectric Mie Particles","authors":"Rafael S. Dutra,Felipe A. Pinheiro,Diney S. Ether Jr.,Cyriaque Genet,Nathan B. Viana,Paulo A. Maia Neto","doi":"10.1021/acsphotonics.5c02076","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02076","url":null,"abstract":"We demonstrate that an effect phenomenologically analogous to circular dichroism can arise even for dielectric and isotropic chiral spherical particles. By analyzing the polarimetry of light scattered from a chiral, lossless microsphere illuminated with linearly polarized light, we show that the scattered light becomes nearly circularly polarized, exhibiting large nonresonant values of the Stokes parameter S3 for a broad range of visible frequencies. This phenomenon occurs only in the Mie regime, with the microsphere radius comparable to the wavelength, and provided that the scattered light is collected by a high-NA objective lens, including nonparaxial Fourier components. Altogether, our findings offer a theoretical framework and motivation for an experimental demonstration of a novel chiroptical effect with isolated dielectric particles, with potential applications in enantioselection and characterization of single microparticles, each and every one with its own chiral response.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"3 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-thermal processes in standard big bang nucleosynthesis. Part III. Reactions with slow nuclei and the overall effect 标准大爆炸核合成中的非热过程。第三部分。慢核反应和整体效应
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1088/1475-7516/2026/02/025
V.T. Voronchev
The present paper completes a series of our works on non-thermal nuclear processes in big bang nucleosynthesis (BBN) started in JCAP 05 (2008) 010 (Part I) and 05 (2009) 001 (Part II). The processes are triggered by non-Maxwellian particles naturally born in the main BBN reactions. Half of these reactions generate fast particles k+ (= n,p,t,3He,α). The other half, being radiative capture processes, produce slow nuclei k- (= d,t,3He,7Li,7Be) which can undergo (k-,n) reactions with neutrons having large cross sections. The particle production rate Rk, thermalization time τk, and effective number density nk are determined. It is shown that at the early stage of BBN the number density of slow deuterons (respectively, 3He) can exceed the number densities of Maxwellian 7Li and 7Be (respectively, 7Be) ions. To clarify the overall non-Maxwellian effect on BBN, both types of the non-Maxwellian particles are taken into account in the reaction network. Particular attention is paid to two-step sequential processes like p(n,γ)d-(n,γ)t, d(p,γ)3He-(n,p)t, t(α,γ)7Li-(n,γ)8Li, 3He(α,γ)7Be-(n,p)7Li, d(t,α)n+(A,n)a1a2, and d(3He,α)p+(A,p)a1a2 with (A,a1,a2) = (7Li,t,α) and (7Be,3He,α). It is obtained that the non-Maxwellian particles can selectively affect the element abundances, e.g., improve the prediction on 7Li/H by ∼ 1.5% and at the same time leave unchanged the 4He abundance. The main conclusion however is that these particles are unable to significantly change the standard picture of BBN in general, and provide a pathway toward a solution of the cosmological lithium problem in particular.
本论文完成了我们从JCAP 05(2008) 010(第一部分)和05(2009)001(第二部分)开始的一系列关于大爆炸核合成(BBN)中的非热核过程的工作。这些过程是由在主要的BBN反应中自然产生的非麦克斯韦粒子触发的。这些反应中有一半产生快速粒子k+ (= n,p,t,3He,α)。另一半是辐射俘获过程,产生慢核k- (= d,t,3He,7Li,7Be),它可以与具有大截面的中子进行(k-,n)反应。确定了粒子产生速率Rk、热化时间τk和有效数密度nk。结果表明,在BBN的早期,慢氘核(分别为3He)的数量密度可以超过麦克斯韦7Li和7Be离子(分别为7Be)的数量密度。为了阐明对BBN的总体非麦克斯韦效应,在反应网络中考虑了两种类型的非麦克斯韦粒子。特别关注两步连续的过程像p (n,γ)d - t (n,γ),d (p,γ)3 - (n, p) t, t(α、γ)7 li -李(n,γ)8 3他(α、γ)7 -李(n, p) 7 d (t)α)n + (A, n) a1a2和d(3他,α)p + (A, p) a1a2 (a1, a2) =(7李,t,α)和(他7,3,α)。结果表明,非麦克斯韦粒子可以选择性地影响元素丰度,例如,在保持4He丰度不变的情况下,将7Li/H的预测提高~ 1.5%。然而,主要的结论是,这些粒子一般来说无法显著改变BBN的标准图像,并为解决宇宙锂问题提供了一条途径。
{"title":"Non-thermal processes in standard big bang nucleosynthesis. Part III. Reactions with slow nuclei and the overall effect","authors":"V.T. Voronchev","doi":"10.1088/1475-7516/2026/02/025","DOIUrl":"https://doi.org/10.1088/1475-7516/2026/02/025","url":null,"abstract":"The present paper completes a series of our works on non-thermal nuclear processes in big bang nucleosynthesis (BBN) started in JCAP 05 (2008) 010 (Part I) and 05 (2009) 001 (Part II). The processes are triggered by non-Maxwellian particles naturally born in the main BBN reactions. Half of these reactions generate fast particles k+ (= n,p,t,3He,α). The other half, being radiative capture processes, produce slow nuclei k- (= d,t,3He,7Li,7Be) which can undergo (k-,n) reactions with neutrons having large cross sections. The particle production rate Rk, thermalization time τk, and effective number density nk are determined. It is shown that at the early stage of BBN the number density of slow deuterons (respectively, 3He) can exceed the number densities of Maxwellian 7Li and 7Be (respectively, 7Be) ions. To clarify the overall non-Maxwellian effect on BBN, both types of the non-Maxwellian particles are taken into account in the reaction network. Particular attention is paid to two-step sequential processes like p(n,γ)d-(n,γ)t, d(p,γ)3He-(n,p)t, t(α,γ)7Li-(n,γ)8Li, 3He(α,γ)7Be-(n,p)7Li, d(t,α)n+(A,n)a1a2, and d(3He,α)p+(A,p)a1a2 with (A,a1,a2) = (7Li,t,α) and (7Be,3He,α). It is obtained that the non-Maxwellian particles can selectively affect the element abundances, e.g., improve the prediction on 7Li/H by ∼ 1.5% and at the same time leave unchanged the 4He abundance. The main conclusion however is that these particles are unable to significantly change the standard picture of BBN in general, and provide a pathway toward a solution of the cosmological lithium problem in particular.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"59 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bosonic quantum Fourier codes 玻色子量子傅立叶编码
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-2000
Anthony Leverrier
While 2-level systems, aka qubits, are a natural choice to perform a logical quantum computation, the situation is less clear at the physical level. Encoding information in higher-dimensional physical systems can indeed provide a first level of redundancy and error correction that simplifies the overall fault-tolerant architecture. A challenge then is to ensure universal control over the encoded qubits. Here, we explore an approach where information is encoded in an irreducible representation of a finite subgroup of $U(2)$ through an inverse quantum Fourier transform. We illustrate this idea by applying it to the real Pauli group $langle X, Zrangle$ in the bosonic setting. The resulting two-mode Fourier cat code displays good error correction properties and admits an experimentally-friendly universal gate set that we discuss in detail.
虽然2级系统(又名量子位)是执行逻辑量子计算的自然选择,但在物理层面上的情况不太清楚。在高维物理系统中编码信息确实可以提供一级冗余和纠错,从而简化整个容错体系结构。因此,一个挑战是确保对编码量子位的通用控制。在这里,我们探索了一种方法,通过反量子傅里叶变换,将信息编码为$U(2)$的有限子群的不可约表示。我们通过将其应用于玻色子环境中的实际泡利群$langle X, Zrangle$来说明这一思想。所得到的双模傅里叶码显示出良好的纠错性能,并允许实验友好的通用门集,我们将详细讨论。
{"title":"Bosonic quantum Fourier codes","authors":"Anthony Leverrier","doi":"10.22331/q-2026-02-09-2000","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-2000","url":null,"abstract":"While 2-level systems, aka qubits, are a natural choice to perform a logical quantum computation, the situation is less clear at the physical level. Encoding information in higher-dimensional physical systems can indeed provide a first level of redundancy and error correction that simplifies the overall fault-tolerant architecture. A challenge then is to ensure universal control over the encoded qubits. Here, we explore an approach where information is encoded in an irreducible representation of a finite subgroup of $U(2)$ through an inverse quantum Fourier transform. We illustrate this idea by applying it to the real Pauli group $langle X, Zrangle$ in the bosonic setting. The resulting two-mode Fourier cat code displays good error correction properties and admits an experimentally-friendly universal gate set that we discuss in detail.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"241 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Jupiter-like uniform metal enrichment in a system of multiple giant exoplanets 多颗巨型系外行星系统中类似木星的均匀金属富集
IF 14.1 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1038/s41550-026-02783-z
Jean-Baptiste Ruffio, Jerry W. Xuan, Yayaati Chachan, Aurora Kesseli, Eve J. Lee, Charles Beichman, Klaus Hodapp, William O. Balmer, Quinn Konopacky, Marshall D. Perrin, Dimitri Mawet, Heather A. Knutson, Geoffrey Bryden, Thomas P. Greene, Doug Johnstone, Jarron Leisenring, Michael Meyer, Marie Ygouf
The accretion of icy and rocky solids during the formation of a gas-giant planet is poorly constrained and challenging to model. Refractory species, like sulfur, are present only in solids in the protoplanetary disk where planets form. Measuring their abundance in planetary atmospheres is one of the most direct ways of constraining the extent and mechanism of solid accretion. Here, using the unprecedented sensitivity of NASA’s James Webb Space Telescope, we measure in detail the chemical make-up of three massive gas giants orbiting the star HR 8799, including direct detections of H2O, CO, CH4, CO2, H2S, 13CO and C18O. We find that these planets are uniformly and highly enriched in heavy elements compared with the star, irrespective of their volatile (carbon and oxygen) or refractory (sulfur) nature, which strongly indicates that the accretion of solids was efficient during their formation. This composition closely resembles that of Jupiter and Saturn and demonstrates that this enrichment also occurs in systems with several gas-giant planets orbiting stars beyond the Solar System. This discovery hints at a shared origin for the heavy-element enrichment of giant planets across a wider range of planet masses and orbital separations than previously anticipated.
在气态巨行星形成过程中,冰和岩石固体的吸积很少受到约束,而且很难建立模型。难熔物质,如硫,只存在于行星形成的原行星盘中的固体中。测量它们在行星大气中的丰度是限制固体吸积程度和机制的最直接方法之一。在这里,我们利用美国宇航局詹姆斯韦伯太空望远镜前所未有的灵敏度,详细测量了围绕恒星HR 8799运行的三颗巨大气体巨星的化学组成,包括直接探测到的H2O, CO, CH4, CO2, H2S, 13CO和C18O。我们发现,与恒星相比,这些行星均匀且高度富集重元素,无论其挥发性(碳和氧)或难熔性(硫)性质如何,这强烈表明在它们形成过程中固体的吸积是有效的。这种成分与木星和土星的成分非常相似,并表明这种富集也发生在太阳系外有几颗气态巨行星绕恒星运行的系统中。这一发现暗示了巨行星重元素富集的共同起源,它们的行星质量和轨道距离比之前预期的要大得多。
{"title":"Jupiter-like uniform metal enrichment in a system of multiple giant exoplanets","authors":"Jean-Baptiste Ruffio, Jerry W. Xuan, Yayaati Chachan, Aurora Kesseli, Eve J. Lee, Charles Beichman, Klaus Hodapp, William O. Balmer, Quinn Konopacky, Marshall D. Perrin, Dimitri Mawet, Heather A. Knutson, Geoffrey Bryden, Thomas P. Greene, Doug Johnstone, Jarron Leisenring, Michael Meyer, Marie Ygouf","doi":"10.1038/s41550-026-02783-z","DOIUrl":"https://doi.org/10.1038/s41550-026-02783-z","url":null,"abstract":"The accretion of icy and rocky solids during the formation of a gas-giant planet is poorly constrained and challenging to model. Refractory species, like sulfur, are present only in solids in the protoplanetary disk where planets form. Measuring their abundance in planetary atmospheres is one of the most direct ways of constraining the extent and mechanism of solid accretion. Here, using the unprecedented sensitivity of NASA’s James Webb Space Telescope, we measure in detail the chemical make-up of three massive gas giants orbiting the star HR 8799, including direct detections of H2O, CO, CH4, CO2, H2S, 13CO and C18O. We find that these planets are uniformly and highly enriched in heavy elements compared with the star, irrespective of their volatile (carbon and oxygen) or refractory (sulfur) nature, which strongly indicates that the accretion of solids was efficient during their formation. This composition closely resembles that of Jupiter and Saturn and demonstrates that this enrichment also occurs in systems with several gas-giant planets orbiting stars beyond the Solar System. This discovery hints at a shared origin for the heavy-element enrichment of giant planets across a wider range of planet masses and orbital separations than previously anticipated.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"315 1","pages":""},"PeriodicalIF":14.1,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitivity-Tunable Complex Permittivity Sensing Enabled by Bound States in the Continuum in a Waveguide-Resonator System 波导-谐振器系统中连续界态实现复介电常数传感的灵敏度可调
IF 11 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-02-09 DOI: 10.1002/lpor.202502110
Yuhang Yang, Yinbing An, Yu Chen, Yihao Yang, Zi-lan Deng, Yulan Huang, Shangli Tang, Tao Fu
Bound states in the continuum (BICs), featuring strong field confinement and theoretically infinite quality factors, offer a powerful mechanism for enhancing light–matter interactions. Here, we propose and experimentally demonstrate a universal strategy to construct and merge two types of BICs in a compact metallic rectangular waveguide-cuboid resonator system in the microwave regime. Leveraging the high-Q$Q$ quasi-BICs, a sensitivity-tunable complex permittivity sensor is developed, with sensing sensitivity adjustable through waveguide-resonator structural parameters. A first-principles analysis establishes a quantitative relationship between the transmission coefficient and the material's complex permittivity, enabling simultaneous extraction of the real part and loss tangent. The sensor's accuracy is validated using commercial microwave dielectric substrates with well-defined permittivities, and its tunable sensitivity is further confirmed through cross-check experiments. Compared with representative microwave permittivity sensors, the proposed approach achieves over 90% improvement in frequency detection resolution and nearly fivefold enhancement in normalized sensitivity. Benefiting from its ultrahigh quality factor, tunable sensitivity, and first-principles-guided design, the sensor can be extended to different frequencies and structural configurations, while allowing convenient sample replacement. These features make it highly suitable for RF substrate characterization, laboratory-scale material screening, and other high-sensitivity microwave sensing applications.
连续介质中的束缚态(BICs)具有强场约束和理论上无限的质量因子,为增强光-物质相互作用提供了强有力的机制。在这里,我们提出并实验证明了一种通用策略,在微波环境下,在紧凑的金属矩形波导-长方体谐振器系统中构建和合并两种类型的bic。利用高Q准bics,开发了一种灵敏度可调的复介电常数传感器,其灵敏度可通过波导谐振器结构参数调节。第一性原理分析建立了透射系数和材料复介电常数之间的定量关系,从而可以同时提取实部和损耗正切。利用具有良好介电常数的商用微波介质衬底验证了传感器的精度,并通过交叉检验实验进一步证实了传感器的可调灵敏度。与代表性的微波介电常数传感器相比,该方法的频率检测分辨率提高了90%以上,归一化灵敏度提高了近5倍。得益于其超高的质量系数、可调的灵敏度和第一性原理指导的设计,该传感器可以扩展到不同的频率和结构配置,同时允许方便的样品更换。这些特点使其非常适合RF基板表征,实验室规模的材料筛选,以及其他高灵敏度的微波传感应用。
{"title":"Sensitivity-Tunable Complex Permittivity Sensing Enabled by Bound States in the Continuum in a Waveguide-Resonator System","authors":"Yuhang Yang, Yinbing An, Yu Chen, Yihao Yang, Zi-lan Deng, Yulan Huang, Shangli Tang, Tao Fu","doi":"10.1002/lpor.202502110","DOIUrl":"https://doi.org/10.1002/lpor.202502110","url":null,"abstract":"Bound states in the continuum (BICs), featuring strong field confinement and theoretically infinite quality factors, offer a powerful mechanism for enhancing light–matter interactions. Here, we propose and experimentally demonstrate a universal strategy to construct and merge two types of BICs in a compact metallic rectangular waveguide-cuboid resonator system in the microwave regime. Leveraging the high-<span data-altimg=\"/cms/asset/384aab40-cc5d-4587-a0b1-6e76613bb554/lpor70971-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"252\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor70971-math-0001.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Q\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor70971:lpor70971-math-0001\" display=\"inline\" location=\"graphic/lpor70971-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper Q\" data-semantic-type=\"identifier\">Q</mi>$Q$</annotation></semantics></math></mjx-assistive-mml></mjx-container> quasi-BICs, a sensitivity-tunable complex permittivity sensor is developed, with sensing sensitivity adjustable through waveguide-resonator structural parameters. A first-principles analysis establishes a quantitative relationship between the transmission coefficient and the material's complex permittivity, enabling simultaneous extraction of the real part and loss tangent. The sensor's accuracy is validated using commercial microwave dielectric substrates with well-defined permittivities, and its tunable sensitivity is further confirmed through cross-check experiments. Compared with representative microwave permittivity sensors, the proposed approach achieves over 90% improvement in frequency detection resolution and nearly fivefold enhancement in normalized sensitivity. Benefiting from its ultrahigh quality factor, tunable sensitivity, and first-principles-guided design, the sensor can be extended to different frequencies and structural configurations, while allowing convenient sample replacement. These features make it highly suitable for RF substrate characterization, laboratory-scale material screening, and other high-sensitivity microwave sensing applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"89 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146153394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly sensitive and stable perovskite detector for ultrahigh-energy radiations via dynamic repair regulation 高灵敏度和稳定的钙钛矿探测器,通过动态修复调节超高能量辐射
IF 35 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-02-09 DOI: 10.1038/s41566-026-01849-8
Hang Yin, Haodi Wu, Yang Zhang, Fei Liu, Qi Bai, Shuwen Yan, Tong Jin, Jincong Pang, Yuting Gao, Qinghao Ling, Kan-Hao Xue, Chongqin Zhu, Luying Li, Ziling Zhou, Zhen Li, Zhiping Zheng, Ling Xu, Qian Chu, Jiang Tang, Guangda Niu
Ultrahigh-energy radiations, including X-rays, electrons and protons exceeding 1 MeV, are prevalent in various field, including radiation therapy, astronomy, high-energy physics and nuclear power plants. However, their detection remains challenging owing to low interaction cross-sections, and even when interactions occur, radiation-induced atomic displacements lead to severe material damage, compromising both the sensitivity and stability of current detectors. Here we report a design principle of lattice-anchoring-enhanced dynamic repair in organic–inorganic hybrid perovskites for simultaneous boosting the sensitivity and stability. Leveraging this approach, the FA0.9Cs0.1PbBr3 single-crystal detector achieves high sensitivity of 165.6 μC mGy−1 cm−3 and high radiation stability against high-fluence 6-MeV X-rays (6.4 × 1011 photons cm−2) and 1.2-MeV electrons (6 × 1016 electrons cm−2). The assembled miniature, implantable detector enables precise, real-time dose monitoring, significantly improving the safety and efficacy of cancer treatments. This work advances the development of high-end semiconductors for diverse high-energy applications, from medical therapy to aerospace electronics, wearable electronics, space photovoltaics and nuclear technology.
超高能辐射,包括x射线、超过1兆电子伏的电子和质子,在放射治疗、天文学、高能物理和核电站等各个领域都很普遍。然而,由于低相互作用截面,它们的检测仍然具有挑战性,即使发生相互作用,辐射引起的原子位移也会导致严重的材料损坏,从而影响当前探测器的灵敏度和稳定性。本文报道了一种在有机-无机杂化钙钛矿中采用晶格锚定增强动态修复的设计原理,以同时提高灵敏度和稳定性。利用这种方法,FA0.9Cs0.1PbBr3单晶探测器获得了165.6 μC mGy−1 cm−3的高灵敏度和高通量6- mev x射线(6.4 × 1011光子cm−2)和1.2 mev电子(6 × 1016电子cm−2)的高辐射稳定性。组装的微型可植入检测器可实现精确、实时的剂量监测,显著提高癌症治疗的安全性和有效性。这项工作推动了用于各种高能应用的高端半导体的发展,从医疗到航空航天电子、可穿戴电子、空间光伏和核技术。
{"title":"Highly sensitive and stable perovskite detector for ultrahigh-energy radiations via dynamic repair regulation","authors":"Hang Yin, Haodi Wu, Yang Zhang, Fei Liu, Qi Bai, Shuwen Yan, Tong Jin, Jincong Pang, Yuting Gao, Qinghao Ling, Kan-Hao Xue, Chongqin Zhu, Luying Li, Ziling Zhou, Zhen Li, Zhiping Zheng, Ling Xu, Qian Chu, Jiang Tang, Guangda Niu","doi":"10.1038/s41566-026-01849-8","DOIUrl":"https://doi.org/10.1038/s41566-026-01849-8","url":null,"abstract":"Ultrahigh-energy radiations, including X-rays, electrons and protons exceeding 1 MeV, are prevalent in various field, including radiation therapy, astronomy, high-energy physics and nuclear power plants. However, their detection remains challenging owing to low interaction cross-sections, and even when interactions occur, radiation-induced atomic displacements lead to severe material damage, compromising both the sensitivity and stability of current detectors. Here we report a design principle of lattice-anchoring-enhanced dynamic repair in organic–inorganic hybrid perovskites for simultaneous boosting the sensitivity and stability. Leveraging this approach, the FA0.9Cs0.1PbBr3 single-crystal detector achieves high sensitivity of 165.6 μC mGy−1 cm−3 and high radiation stability against high-fluence 6-MeV X-rays (6.4 × 1011 photons cm−2) and 1.2-MeV electrons (6 × 1016 electrons cm−2). The assembled miniature, implantable detector enables precise, real-time dose monitoring, significantly improving the safety and efficacy of cancer treatments. This work advances the development of high-end semiconductors for diverse high-energy applications, from medical therapy to aerospace electronics, wearable electronics, space photovoltaics and nuclear technology.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"31 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity dependence of K*(892) ± production in pp collisions at [formula omitted] TeV [公式省略]TeV下pp碰撞K*(892) ±产量的多重依赖性
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140253
The ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, Zul Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, H.M. Alfanda, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelsh, C. Arata, S. Arcelli, R. Arnaldi, J. G M C A Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, D. Averyanov, M.D. Azmi, H. Baba, A. R J Babu, A. Badal, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaf, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, S. Belokurova, L. G E Beltran, Y. A V Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y. E M Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M. F T Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J. M M Camacho, P. Camerini, M.T. Camerlingo, F. D M Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L. A D Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J. W O Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, P. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, M.R. Ciupek, G. Clai, F. Colamaria, J.S. Colburn, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. De Cataldo, J. De Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G. G A De Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divi, ø Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, G. Feofilov, A. Fernández Téllez, L. Ferrandi, M.B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V. J G Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, E. Frajna, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, D.R. Gangadharan, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M. B Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Gl, E. Glimos, V. Gonzalez, P. Gordeev, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellb, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I. P M Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, S. Iurchenko, M. Ivanov, M. Ivanov, V. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A. A P Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. Kalweit, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, E. Karpechev, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-B”osing, M. Kleiner, A. Kluge, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, V. Kuskov, M. Kutyla, A. Kuznetsov, M.J. Kweon, Y. Kwon, S. L La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, P. Larionov, E. Laudi, L. Lautner, R. A N Laveaga, R. Lavicka, R. Lea, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, R.C. Lemmon, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G. S S Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, F.V. Lugo, J. Luo, G. Luparello, M. A T Johnson, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, M. Malaev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M. P P Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, O. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J. E M Mendez, E. Meninno, A.S. Menon, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miśkowiec, A. Modak, B. Mohanty, M. Mohisin, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, S. Panebianco, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, V. Petrov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, L. Quaglia, A. M K Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-álvarez, M. Rasa, S.S. Räsänen, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, V. Riabov, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Røed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, A. Rosano, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, L. C V Ryder, J. Ryu, W. Rzesa, B. Sabiu, S. Sadhu, S. Sadovsky, J. Saetre, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, K. Sajdakova, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, M. H P Sas, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M.O. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schr, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, A. Shangaraev, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R. J M Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, C.P. Stylianidis, A. A P Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, A. Tikhonov, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L. V R Van Doremalen, M. Van Leeuwen, C.A. Van Veen, R. J G Van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M. M O Virta, A. Vodopyanov, B. Volkel, M.A. Völkl, S.A. Voloshin, G. Volpe, B. Von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, M. Winn, J. Witte, M. Wojnar, J.R. Wright, C.-T Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, M. Zhalov, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, S.C. Zugravel, N. Zurlo
The first results of K*(892)<ce:sup loc="post"> ± </ce:sup> production at midrapidity (|<ce:italic>y</ce:italic>| < 0.5) in pp collisions at <mml:math altimg="si2.svg"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mspace width="0.33em"></mml:mspace><mml:mo linebreak="goodbreak">=</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV as a function of the event multiplicity are presented. The K*(892)<ce:sup loc="post"> ± </ce:sup> has been reconstructed via its hadronic decay channel K<mml:math altimg="si5.svg"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>*</mml:mo></mml:msup><mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mn>892</mml:mn><mml:mo>)</mml:mo></mml:mrow><mml:mo>±</mml:mo></mml:msup><mml:mo>→</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:msup><mml:mi>π</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mspace width="0.33em"></mml:mspace><mml:mo linebreak="goodbreak">+</mml:mo><mml:mspace width="0.33em"></mml:mspace><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:mrow></mml:math> using the ALICE detector at the LHC. For each multiplicity class, the differential transverse momentum (<ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>) spectrum, the mean transverse momentum ⟨<ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>⟩, the <ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>-integrated yield (d<ce:italic>N</ce:italic>/d<ce:italic>y</ce:italic>), and the ratio of the K*(892)<ce:sup loc="post"> ± </ce:sup> to <mml:math altimg="si3.svg"><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:math> yields are reported. These are consistent with previous K*(892)<ce:sup loc="post">0</ce:sup> resonance results with a higher level of precision. Comparisons with phenomenological models such as PYTHIA6, PYTHIA8, EPOS-LHC, and DIPSY are also discussed. For the first time, a significant K*(892)<ce:sup loc="post"> ± </ce:sup>/<mml:math altimg="si3.svg"><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:math> suppression in pp collisions is observed at a 7<ce:italic>σ</ce:italic> level passing from low to high multiplicity events. The ratios of the <ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf>-differential yields of K*(892)<ce:sup loc="post"> ± </ce:sup> and <mml:math altimg="si3.svg"><mml:msubsup><mml:mrow><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow></mml:mrow><mml:mi mathvariant="normal">S</mml:mi><mml:mn>0</mml:mn></mml:msubsup></mml:math> in high and low multiplicity events are also presented along with their double ratio. For <ce:italic>p</ce:italic><ce:inf loc="post">T</ce:inf> ≲ 2 GeV/<ce:italic>c</ce:italic>
给出了s=13 TeV的pp碰撞中速(|y| <; 0.5)下K*(892) ± 产率与事件多重度的函数关系的初步结果。利用ALICE探测器通过K*(892)±→π±+KS0的强子衰变通道重构了K*(892) ± 。对于每个多重性类别,报告了微分横向动量(pT)谱,平均横向动量⟨pT⟩,pT积分产率(dN/dy)和K*(892) ± 与KS0产率的比率。这与先前的K*(892)0共振结果一致,精度更高。并与PYTHIA6、PYTHIA8、EPOS-LHC和DIPSY等现象学模型进行了比较。首次在7σ水平上观察到pp碰撞中K*(892) ± /KS0的显著抑制。K*(892) ± 和KS0在高、低多重度事件下的pt差产率的比值,以及它们的双比值。对于pT > 2 GeV/c,这一双比值持续低于1,大于3σ,表明抑制主要影响低pT共振。在重离子碰撞中,K*(892) ± /KS0比随多重度的增加而减小的趋势,通常是由于短周期共振的衰变粒子的再散射,在没有使用强子加力燃烧器的情况下,用EPOS-LHC模型再现了这种趋势。
{"title":"Multiplicity dependence of K*(892) ± production in pp collisions at [formula omitted] TeV","authors":"The ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, Zul Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, H.M. Alfanda, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelsh, C. Arata, S. Arcelli, R. Arnaldi, J. G M C A Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, D. Averyanov, M.D. Azmi, H. Baba, A. R J Babu, A. Badal, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaf, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, S. Belokurova, L. G E Beltran, Y. A V Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y. E M Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M. F T Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J. M M Camacho, P. Camerini, M.T. Camerlingo, F. D M Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L. A D Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J. W O Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, P. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, M.R. Ciupek, G. Clai, F. Colamaria, J.S. Colburn, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. De Cataldo, J. De Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G. G A De Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divi, ø Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, G. Feofilov, A. Fernández Téllez, L. Ferrandi, M.B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V. J G Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, E. Frajna, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, D.R. Gangadharan, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M. B Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Gl, E. Glimos, V. Gonzalez, P. Gordeev, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellb, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I. P M Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, S. Iurchenko, M. Ivanov, M. Ivanov, V. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A. A P Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. Kalweit, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, E. Karpechev, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-B”osing, M. Kleiner, A. Kluge, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, V. Kuskov, M. Kutyla, A. Kuznetsov, M.J. Kweon, Y. Kwon, S. L La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, P. Larionov, E. Laudi, L. Lautner, R. A N Laveaga, R. Lavicka, R. Lea, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, R.C. Lemmon, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G. S S Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, F.V. Lugo, J. Luo, G. Luparello, M. A T Johnson, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, M. Malaev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M. P P Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, O. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J. E M Mendez, E. Meninno, A.S. Menon, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miśkowiec, A. Modak, B. Mohanty, M. Mohisin, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, S. Panebianco, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, V. Petrov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, L. Quaglia, A. M K Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-álvarez, M. Rasa, S.S. Räsänen, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, V. Riabov, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Røed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, A. Rosano, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, L. C V Ryder, J. Ryu, W. Rzesa, B. Sabiu, S. Sadhu, S. Sadovsky, J. Saetre, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, K. Sajdakova, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, M. H P Sas, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M.O. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schr, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, A. Shangaraev, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R. J M Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, C.P. Stylianidis, A. A P Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, A. Tikhonov, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L. V R Van Doremalen, M. Van Leeuwen, C.A. Van Veen, R. J G Van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M. M O Virta, A. Vodopyanov, B. Volkel, M.A. Völkl, S.A. Voloshin, G. Volpe, B. Von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, M. Winn, J. Witte, M. Wojnar, J.R. Wright, C.-T Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, M. Zhalov, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, S.C. Zugravel, N. Zurlo","doi":"10.1016/j.physletb.2026.140253","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140253","url":null,"abstract":"The first results of K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; production at midrapidity (|&lt;ce:italic&gt;y&lt;/ce:italic&gt;| &lt; 0.5) in pp collisions at &lt;mml:math altimg=\"si2.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:msqrt&gt;&lt;mml:mi&gt;s&lt;/mml:mi&gt;&lt;/mml:msqrt&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;=&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mn&gt;13&lt;/mml:mn&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt; TeV as a function of the event multiplicity are presented. The K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; has been reconstructed via its hadronic decay channel K&lt;mml:math altimg=\"si5.svg\"&gt;&lt;mml:mrow&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;*&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:msup&gt;&lt;mml:mrow&gt;&lt;mml:mo&gt;(&lt;/mml:mo&gt;&lt;mml:mn&gt;892&lt;/mml:mn&gt;&lt;mml:mo&gt;)&lt;/mml:mo&gt;&lt;/mml:mrow&gt;&lt;mml:mo&gt;±&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mo&gt;→&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:msup&gt;&lt;mml:mi&gt;π&lt;/mml:mi&gt;&lt;mml:mo&gt;±&lt;/mml:mo&gt;&lt;/mml:msup&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:mo linebreak=\"goodbreak\"&gt;+&lt;/mml:mo&gt;&lt;mml:mspace width=\"0.33em\"&gt;&lt;/mml:mspace&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:mrow&gt;&lt;/mml:math&gt; using the ALICE detector at the LHC. For each multiplicity class, the differential transverse momentum (&lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;) spectrum, the mean transverse momentum ⟨&lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;⟩, the &lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;-integrated yield (d&lt;ce:italic&gt;N&lt;/ce:italic&gt;/d&lt;ce:italic&gt;y&lt;/ce:italic&gt;), and the ratio of the K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; to &lt;mml:math altimg=\"si3.svg\"&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:math&gt; yields are reported. These are consistent with previous K*(892)&lt;ce:sup loc=\"post\"&gt;0&lt;/ce:sup&gt; resonance results with a higher level of precision. Comparisons with phenomenological models such as PYTHIA6, PYTHIA8, EPOS-LHC, and DIPSY are also discussed. For the first time, a significant K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt;/&lt;mml:math altimg=\"si3.svg\"&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:math&gt; suppression in pp collisions is observed at a 7&lt;ce:italic&gt;σ&lt;/ce:italic&gt; level passing from low to high multiplicity events. The ratios of the &lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt;-differential yields of K*(892)&lt;ce:sup loc=\"post\"&gt; ± &lt;/ce:sup&gt; and &lt;mml:math altimg=\"si3.svg\"&gt;&lt;mml:msubsup&gt;&lt;mml:mrow&gt;&lt;mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;K&lt;/mml:mi&gt;&lt;/mml:mrow&gt;&lt;/mml:mrow&gt;&lt;mml:mi mathvariant=\"normal\"&gt;S&lt;/mml:mi&gt;&lt;mml:mn&gt;0&lt;/mml:mn&gt;&lt;/mml:msubsup&gt;&lt;/mml:math&gt; in high and low multiplicity events are also presented along with their double ratio. For &lt;ce:italic&gt;p&lt;/ce:italic&gt;&lt;ce:inf loc=\"post\"&gt;T&lt;/ce:inf&gt; ≲ 2 GeV/&lt;ce:italic&gt;c&lt;/ce:italic&gt;","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"111 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unusual impulse-momentum relationship in non-reciprocal light interactions. 非互易光相互作用中不寻常的冲量-动量关系。
IF 23.4 1区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2026-02-09 DOI: 10.1038/s41377-025-02139-8
Yuhui Zhuang, Juan Wu, Siyu Li, Yi Hu, Zhigang Chen, Jingjun Xu

Non-reciprocal interactions, featured with an asymmetric relation between action and reaction, underpin exotic phenomena across living and artificial systems. Albeit extensively studied, they have been largely underexplored in nonlinear interactions of waves. In this work, we report an unusual impulse-momentum relationship for an optical solitary wave whose internal interactions are non-reciprocal. The solitary wave gains either an enhanced or a reversed momentum relative to an impulse that is applied to one of its two components. In the regime where the solitary wave is not broken down, the impulse-momentum relationship is found to be linear, yet its slope is unusual - either exceeding one or even being negative. Our results may initiate more fundamental considerations related to non-reciprocal wave interactions that are useful for designing novel non-Hermitian devices. We report an unusual impulse-momentum relationship for an optical solitary wave whose internal interactions are non-reciprocal. An enhanced or even a reversed momentum compared to an impulse is gained.

非互反相互作用以作用和反应之间的不对称关系为特征,是生物和人工系统中奇异现象的基础。尽管它们被广泛研究,但在波的非线性相互作用中,它们在很大程度上还没有得到充分的探索。在这项工作中,我们报告了一个内部相互作用是非互易的光孤波的不寻常的脉冲-动量关系。相对于施加于其两个分量之一的脉冲,孤波获得增强或反向的动量。在孤波未被击破的状态下,冲量-动量关系是线性的,但其斜率不寻常——要么超过1,要么甚至为负。我们的结果可能会引发与非互反波相互作用有关的更基本的考虑,这些考虑对设计新的非厄米器件很有用。我们报告了一个内部相互作用是非互易的光孤波的不寻常的冲量-动量关系。与冲量相比,获得了增强的甚至相反的动量。
{"title":"Unusual impulse-momentum relationship in non-reciprocal light interactions.","authors":"Yuhui Zhuang, Juan Wu, Siyu Li, Yi Hu, Zhigang Chen, Jingjun Xu","doi":"10.1038/s41377-025-02139-8","DOIUrl":"https://doi.org/10.1038/s41377-025-02139-8","url":null,"abstract":"<p><p>Non-reciprocal interactions, featured with an asymmetric relation between action and reaction, underpin exotic phenomena across living and artificial systems. Albeit extensively studied, they have been largely underexplored in nonlinear interactions of waves. In this work, we report an unusual impulse-momentum relationship for an optical solitary wave whose internal interactions are non-reciprocal. The solitary wave gains either an enhanced or a reversed momentum relative to an impulse that is applied to one of its two components. In the regime where the solitary wave is not broken down, the impulse-momentum relationship is found to be linear, yet its slope is unusual - either exceeding one or even being negative. Our results may initiate more fundamental considerations related to non-reciprocal wave interactions that are useful for designing novel non-Hermitian devices. We report an unusual impulse-momentum relationship for an optical solitary wave whose internal interactions are non-reciprocal. An enhanced or even a reversed momentum compared to an impulse is gained.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"15 1","pages":"111"},"PeriodicalIF":23.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146149712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Photonics J. Biophotonics Laser Photonics Rev. Comput. Phys. Commun. J. Comput. Phys. Prog. Part. Nucl. Phys. Prog. Quantum Electron. Solid State Commun. IEEE Trans. Plasma Sci. Acoust. Phys. Appl. Magn. Reson. Astrophys. Bull. ASTROPHYSICS+ Braz. J. Phys. B LEBEDEV PHYS INST+ Commun. Math. Phys. Dokl. Phys. EPJ QUANTUM TECHNOL Exp. Astron. Few-Body Syst. Found. Phys. FRONT PHYS-BEIJING Gen. Relativ. Gravitation Indian J. Phys. Int. J. Theor. Phys. Jetp Lett. J. Astrophys. Astron. J CONTEMP PHYS-ARME+ J. Exp. Theor. Phys. J. High Energy Phys. J. Low Temp. Phys. J. Russ. Laser Res. J. Stat. Phys. J. Supercond. Novel Magn. J KOREAN PHYS SOC Kinematics Phys. Celestial Bodies Lett. Math. Phys. Living Rev. Relativ. Living Rev. Sol. Phys. Moscow Univ. Phys. Bull. Opt. Rev. Opt. Spectrosc. Phys. At. Nucl. Phys. Part. Nucl. Phys. Solid State PHYS WAVE PHENOM Plasma Phys. Rep. Plasmonics Quantum Inf. Process. Russ. J. Math. Phys. Russ. Phys. J. SCI CHINA PHYS MECH Sol. Phys. Sol. Syst. Res. Tech. Phys. Tech. Phys. Lett. Theor. Math. Phys. ACTA PHYS SIN-CH ED Acta Phys. Pol. B 光学学报 光子学报 Acta Phys. Pol. A Adv. Phys. ADV PHYS-X Adv. Condens. Matter Phys. Adv. High Energy Phys. Am. J. Phys. Ann. Phys. Annu. Rev. Condens. Matter Phys. Annu. Rev. Nucl. Part. Sci. Appl. Phys. Express Appl. Phys. Lett. Annu. Rev. Astron. Astrophys. ARCH ACOUST APL Photonics Appl. Phys. Rev. Ann. Phys. ASTRON ASTROPHYS Astrophys. J. Suppl. Ser. Astrophys. Space Sci. ASTROBIOLOGY Can. J. Phys. 液晶与显示 Chin. Phys. C Chin. Phys. B Classical Quantum Gravity CHIN OPT LETT Chin. J. Phys. Chin. Phys. Lett. Condens. Matter Phys. Commun. Phys. Commun. Theor. Phys. Contrib. Plasma Phys. Curr. Appl Phys. ENTROPY-SWITZ EPL-EUROPHYS LETT EUR PHYS J-SPEC TOP EUR PHYS J-APPL PHYS Front. Phys. High Pressure Res.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1