首页 > 最新文献

物理与天体物理最新文献

英文 中文
IF:
Statistics-informed parameterized quantum circuit: towards practical quantum state preparation and learning via maximum entropy principle 统计信息参数化量子电路:通过最大熵原理实现实用量子态制备和学习
IF 7.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2026-02-09 DOI: 10.1038/s41534-026-01191-5
Xi-Ning Zhuang, Zhao-Yun Chen, Cheng Xue, Xiao-Fan Xu, Chao Wang, Huan-Yu Liu, Ming-Yang Tan, Tai-Ping Sun, Yun-Jie Wang, Jia-Xuan Zhang, Yu-Chun Wu, Guo-Ping Guo
Quantum computing offers significant potential for tackling complex problems, yet preparing quantum states from real-world data remains a critical challenge. We introduce the statistics-informed parameterized quantum circuit (SI-PQC), an approach specifically designed to efficiently prepare arbitrary statistical distributions. By leveraging statistical symmetries in data through the maximum entropy principle, SI-PQC encodes prior information with a fixed-structure circuit and tunable parameters, eliminating extensive pre-processing. This method achieves exponential resource savings in preparing mixture models, crucial for applications in statistics and machine learning. SI-PQC also supports variational learning within an optimally dimensioned training space, enhancing generalization, trainability and statistical interpretability. Numerical experiments confirm that SI-PQC can effectively prepare diverse distributions and accurately learn Gaussian mixture models, aligning closely with theoretical expectations. Applications in financial derivatives pricing and online risk analysis showcase SI-PQC’s practical advantages, with substantial improvements in end-to-end quantum resource efficiency and applicability to empirical data. As a versatile and resource-efficient subroutine, SI-PQC broadens the scope of quantum algorithms, especially in real-time, data-driven fields such as finance, online machine learning, and medical diagnostics.
量子计算为解决复杂问题提供了巨大的潜力,但从现实世界的数据中制备量子态仍然是一个关键的挑战。我们介绍了统计信息参数化量子电路(SI-PQC),这是一种专门设计用于有效制备任意统计分布的方法。SI-PQC通过最大熵原理利用数据的统计对称性,用固定结构电路和可调参数对先验信息进行编码,消除了大量的预处理。这种方法在准备混合模型方面实现了指数级的资源节约,这对于统计学和机器学习的应用至关重要。SI-PQC还支持最优维训练空间内的变分学习,增强泛化,可训练性和统计可解释性。数值实验证实,SI-PQC能够有效制备多种分布,准确学习高斯混合模型,符合理论预期。SI-PQC在金融衍生品定价和在线风险分析方面的应用显示了其实际优势,在端到端量子资源效率和对经验数据的适用性方面有了实质性的提高。SI-PQC作为一种通用且资源高效的子程序,拓宽了量子算法的应用范围,特别是在实时、数据驱动的领域,如金融、在线机器学习和医疗诊断。
{"title":"Statistics-informed parameterized quantum circuit: towards practical quantum state preparation and learning via maximum entropy principle","authors":"Xi-Ning Zhuang, Zhao-Yun Chen, Cheng Xue, Xiao-Fan Xu, Chao Wang, Huan-Yu Liu, Ming-Yang Tan, Tai-Ping Sun, Yun-Jie Wang, Jia-Xuan Zhang, Yu-Chun Wu, Guo-Ping Guo","doi":"10.1038/s41534-026-01191-5","DOIUrl":"https://doi.org/10.1038/s41534-026-01191-5","url":null,"abstract":"Quantum computing offers significant potential for tackling complex problems, yet preparing quantum states from real-world data remains a critical challenge. We introduce the statistics-informed parameterized quantum circuit (SI-PQC), an approach specifically designed to efficiently prepare arbitrary statistical distributions. By leveraging statistical symmetries in data through the maximum entropy principle, SI-PQC encodes prior information with a fixed-structure circuit and tunable parameters, eliminating extensive pre-processing. This method achieves exponential resource savings in preparing mixture models, crucial for applications in statistics and machine learning. SI-PQC also supports variational learning within an optimally dimensioned training space, enhancing generalization, trainability and statistical interpretability. Numerical experiments confirm that SI-PQC can effectively prepare diverse distributions and accurately learn Gaussian mixture models, aligning closely with theoretical expectations. Applications in financial derivatives pricing and online risk analysis showcase SI-PQC’s practical advantages, with substantial improvements in end-to-end quantum resource efficiency and applicability to empirical data. As a versatile and resource-efficient subroutine, SI-PQC broadens the scope of quantum algorithms, especially in real-time, data-driven fields such as finance, online machine learning, and medical diagnostics.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"7 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The (higher) Hamiltonians of (generalized) trigonometric and rational Calogero-Sutherland models by MO R-matrix 由MO r -矩阵的(广义)三角和有理Calogero-Sutherland模型的(高)哈密顿量
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140265
Yue Li, Fan Liu, Rui Wang, Jie Yang
By using the integrable lattice model proposed by Maulik and Okounkov, we derive the (higher) Hamiltonians of the (generalized) trigonometric Calogero-Sutherland models. Then in terms of these (higher) Hamiltonians, we further construct certain nested structures and derive the commutative operators which coincide with the (higher) Hamiltonians of the (generalized) rational Calogero-Sutherland models.
利用Maulik和Okounkov提出的可积点阵模型,导出了(广义)三角Calogero-Sutherland模型的(高)哈密顿量。然后,根据这些(高)哈密顿量,我们进一步构造了某些嵌套结构,并推导出与(广义)有理Calogero-Sutherland模型的(高)哈密顿量相吻合的交换算子。
{"title":"The (higher) Hamiltonians of (generalized) trigonometric and rational Calogero-Sutherland models by MO R-matrix","authors":"Yue Li, Fan Liu, Rui Wang, Jie Yang","doi":"10.1016/j.physletb.2026.140265","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140265","url":null,"abstract":"By using the integrable lattice model proposed by Maulik and Okounkov, we derive the (higher) Hamiltonians of the (generalized) trigonometric Calogero-Sutherland models. Then in terms of these (higher) Hamiltonians, we further construct certain nested structures and derive the commutative operators which coincide with the (higher) Hamiltonians of the (generalized) rational Calogero-Sutherland models.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"2 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimising the number of edges in LC-equivalent graph states 最小化在lc等价图状态中的边的数量
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-2001
Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen
Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.
图态是一类强大的纠缠态,在量子通信和量子计算中有着广泛的应用。将一个图状态映射到另一个图状态的局部Clifford (LC)操作可以改变相应图的结构,包括改变边的数量。在这里,我们处理相关的边最小化问题:在给定图的lc等价类中找到具有最小边数的图。这样的图被称为最小边缘表示(MER),对于最小化创建图状态所需的资源至关重要。我们利用Bouchet的lc等价代数公式将边最小化问题编码为整数线性规划(EDM-ILP)。我们进一步提出了一种由局部聚类系数引导的模拟退火(EDM-SA)方法来最小化边缘。通过结合EDM-SA和EDM-ILP,我们确定了最多16个量子位的图态的新MERs。我们将ILP扩展到加权边最小化,其中每条边都有一个相关的权值,并证明了这个问题是np完全的。最后,我们使用我们的工具来最小化使用聚变操作创建全光子广义中继器图状态所需的资源。
{"title":"Minimising the number of edges in LC-equivalent graph states","authors":"Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen","doi":"10.22331/q-2026-02-09-2001","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-2001","url":null,"abstract":"Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"9 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable Visible/NIR Dual-Narrowband Organic Photodetectors with Photomultiplication for Interference-Resistant Optical Communication 用于抗干扰光通信的可调谐可见光/近红外双窄带光电倍增有机光电探测器
IF 11 1区 物理与天体物理 Q1 OPTICS Pub Date : 2026-02-09 DOI: 10.1002/lpor.202502956
Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen
The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.
窄带光信号的检测能力在光通信、精确目标识别等方面具有重要意义。本研究提出了一种基于单个器件光电特性协同调节的双窄带可见光/近红外增益检测方法。该器件集成了两个不同的体异质结(bhj),一个具有可见光吸收,另一个具有近红外吸收,在背靠背结构中。该设计通过调节外部电路的载流子注入来控制光电倍增,实现了可调偏的可见光/近红外双波段检测。此外,通过结合光学微腔来调制光场分布,实现了可调谐的可见光/近红外双窄带光探测,并能够通过改变偏压的极性来切换两个波长。例如,在450 nm和810 nm处实现窄带响应,其中两种模式可以通过改变偏置极性来切换。在450nm处获得1050%的峰值外量子效率(EQE)和50nm的全宽半宽(FWHM)。在810 nm处观察到峰值EQE为130%,FWHM为75 nm。值得注意的是,该器件在抗干扰光通信方面表现出色,无需额外的光滤波器即可运行。
{"title":"Tunable Visible/NIR Dual-Narrowband Organic Photodetectors with Photomultiplication for Interference-Resistant Optical Communication","authors":"Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen","doi":"10.1002/lpor.202502956","DOIUrl":"https://doi.org/10.1002/lpor.202502956","url":null,"abstract":"The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Writing in the age of chatbots 聊天机器人时代的写作
IF 39.5 1区 物理与天体物理 Q1 PHYSICS, APPLIED Pub Date : 2026-02-09 DOI: 10.1038/s42254-026-00920-1
As chatbots become more ubiquitous in our everyday lives, we remind our readers that good writing comes from knowing what you want to say.
随着聊天机器人在我们的日常生活中变得越来越普遍,我们提醒我们的读者,好的写作来自于知道你想说什么。
{"title":"Writing in the age of chatbots","authors":"","doi":"10.1038/s42254-026-00920-1","DOIUrl":"10.1038/s42254-026-00920-1","url":null,"abstract":"As chatbots become more ubiquitous in our everyday lives, we remind our readers that good writing comes from knowing what you want to say.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 2","pages":"65-65"},"PeriodicalIF":39.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-026-00920-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bias-Free Functional Terahertz Photoconductive Emitter 无偏置功能太赫兹光导发射器
IF 7 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.1021/acsphotonics.5c02612
Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han
The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.
在生成过程中雕刻太赫兹(THz)波前的能力对于通信和成像应用至关重要。然而,相关的器件,即具有波前调制能力的功能性太赫兹发射器,仍然很少。在这里,我们提出了一种基于双金属天线的无偏光导太赫兹发射器直接产生特定太赫兹波前的方法。发射的太赫兹辐射是由横向肖特基势垒(LS)和横向光-登伯效应(LPD)驱动的漂移电流产生的。同时,通过精确设计天线的几何参数和方向,我们实现了对发射太赫兹波的幅度和相位的连续控制,从而允许对太赫兹波前进行灵活控制。我们的方法实现了宽带太赫兹波前控制,设计简单,制造成本低,适合大面积处理。
{"title":"Bias-Free Functional Terahertz Photoconductive Emitter","authors":"Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han","doi":"10.1021/acsphotonics.5c02612","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02612","url":null,"abstract":"The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"35 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algebra of operators for Q-Schur polynomials Q-Schur多项式的算子代数
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140259
Nikita Tselousov
We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.
我们考虑作用于Schur和Q-Schur多项式上的代数,对应于Kadomtsev-Petviashvili (KP)和BKP层次。我们以仿射杨算子的精神来介绍它们,特别注意交换子代数、特征值的盒可加性和算子的单钩展开。
{"title":"Algebra of operators for Q-Schur polynomials","authors":"Nikita Tselousov","doi":"10.1016/j.physletb.2026.140259","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140259","url":null,"abstract":"We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"51 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of the p–[formula omitted] correlation function in pp collisions at [formula omitted] TeV TeV下pp碰撞中p -[公式略]相关函数的测量
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140252
ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, ZUL. Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelshäuser, S. Arcelli, R. Arnaldi, J.G.M.C.A. Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, M.D. Azmi, H. Baba, A.R.J. Babu, A. Badalà, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaföldi, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, L.G.E. Beltran, Y.A.V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y.E.M. Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M.F.T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, P. Camerini, M.T. Camerlingo, F.D.M. Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L.A.D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J.W.O. Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, T. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, G. Clai, F. Colamaria, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G.G.A. de Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divia, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, A. Feliciello, G. Feofilov, A. Fernández Téllez, L. Ferrandi, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M.B. Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Glässel, E. Glimos, V. Gonzalez, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, S. Gross-Bölting, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, J. Haidenbauer, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, A. Hasan, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I.P.M. Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, M. Ivanov, M. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, E.P. Jamro, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A.A.P. Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, A. Kalinak, A. Kalweit, Y. Kamiya, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, J.T. Kinner, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M.B. Knuesel, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, A. Kuznetsov, M.J. Kweon, Y. Kwon, S.L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, E. Laudi, L. Lautner, R.A.N. Laveaga, R. Lavicka, R. Lea, J.B. Lebert, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G.S.S. Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, O. Lubynets, F.V. Lugo, J. Luo, G. Luparello, M.A.T. Johnson, J.M. Friedrich, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, R.S. Manhart, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M.P.P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, A. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, J.L. Mayo, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J.E.M. Mendez, E. Meninno, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miškowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, J.S. Potgieter, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Pulawski, L. Quaglia, A.M.K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-Álvarez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, A. Rustamov, Y. Ryabov, A. Rybicki, L.C.V. Ryder, G. Ryu, J. Ryu, W. Rzesa, B. Sabiu, R. Sadek, S. Sadhu, S. Sadovsky, A. Saha, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, U. Savino, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, W.D. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R.J.M. Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, C. Sporleder, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, A.A.P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L.V.R. van Doremalen, M. van Leeuwen, C.A. van Veen, R.J.G. van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M.M.O. Virta, A. Vodopyanov, M.A. Völkl, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, J. Witte, M. Wojnar, J.R. Wright, C.-T. Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K. Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, A. Zingaretti, S.C. Zugravel, N. Zurlo
In this letter, the first measurement of the femtoscopic correlation of protons and Σ+ hyperons is presented and used to study the p–Σ+ interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at s=13 TeV. The Σ+ hyperons are reconstructed using a missing-mass approach in the decay channel to p+π0 with π0γγ, while both Σ+ and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p–Σ+ correlation function for the first time. Thanks to the high significance achieved in the p–Σ+ correlation signal, it is possible to discriminate between the predictions of different models of the N–Σ interaction and to accomplish a first determination of the p–Σ+ scattering parameters.
在这封信中,首次测量了质子和Σ+超子的飞镜相关性,并用于研究p -Σ +相互作用。利用ALICE探测器在s=13 TeV的高倍数触发的pp碰撞中进行了测量。在π0→γγ的衰变通道中,利用缺失质量的方法重构了Σ+超子,同时利用机器学习方法识别了Σ+和质子。这些技术导致了高的重建效率和纯度,这使得p -Σ +相关函数的测量成为可能。由于p -Σ +相关信号的高显著性,可以区分不同模型对N -Σ相互作用的预测,并完成p -Σ +散射参数的首次确定。
{"title":"Measurement of the p–[formula omitted] correlation function in pp collisions at [formula omitted] TeV","authors":"ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, ZUL. Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelshäuser, S. Arcelli, R. Arnaldi, J.G.M.C.A. Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, M.D. Azmi, H. Baba, A.R.J. Babu, A. Badalà, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaföldi, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, L.G.E. Beltran, Y.A.V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y.E.M. Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M.F.T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, P. Camerini, M.T. Camerlingo, F.D.M. Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L.A.D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J.W.O. Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, T. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, G. Clai, F. Colamaria, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G.G.A. de Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divia, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, A. Feliciello, G. Feofilov, A. Fernández Téllez, L. Ferrandi, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M.B. Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Glässel, E. Glimos, V. Gonzalez, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, S. Gross-Bölting, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, J. Haidenbauer, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, A. Hasan, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I.P.M. Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, M. Ivanov, M. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, E.P. Jamro, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A.A.P. Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, A. Kalinak, A. Kalweit, Y. Kamiya, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, J.T. Kinner, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M.B. Knuesel, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, A. Kuznetsov, M.J. Kweon, Y. Kwon, S.L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, E. Laudi, L. Lautner, R.A.N. Laveaga, R. Lavicka, R. Lea, J.B. Lebert, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G.S.S. Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, O. Lubynets, F.V. Lugo, J. Luo, G. Luparello, M.A.T. Johnson, J.M. Friedrich, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, R.S. Manhart, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M.P.P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, A. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, J.L. Mayo, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J.E.M. Mendez, E. Meninno, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miškowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, J.S. Potgieter, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Pulawski, L. Quaglia, A.M.K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-Álvarez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, A. Rustamov, Y. Ryabov, A. Rybicki, L.C.V. Ryder, G. Ryu, J. Ryu, W. Rzesa, B. Sabiu, R. Sadek, S. Sadhu, S. Sadovsky, A. Saha, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, U. Savino, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, W.D. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R.J.M. Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, C. Sporleder, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, A.A.P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L.V.R. van Doremalen, M. van Leeuwen, C.A. van Veen, R.J.G. van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M.M.O. Virta, A. Vodopyanov, M.A. Völkl, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, J. Witte, M. Wojnar, J.R. Wright, C.-T. Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K. Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, A. Zingaretti, S.C. Zugravel, N. Zurlo","doi":"10.1016/j.physletb.2026.140252","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140252","url":null,"abstract":"In this letter, the first measurement of the femtoscopic correlation of protons and <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> hyperons is presented and used to study the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at <mml:math altimg=\"si3.svg\"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV. The <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> hyperons are reconstructed using a missing-mass approach in the decay channel to <mml:math altimg=\"si28.svg\"><mml:mrow><mml:mi mathvariant=\"normal\">p</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:msup><mml:mi>π</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:mrow></mml:math> with <mml:math altimg=\"si29.svg\"><mml:mrow><mml:msup><mml:mi>π</mml:mi><mml:mn>0</mml:mn></mml:msup><mml:mo>→</mml:mo><mml:mi>γ</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math>, while both <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> correlation function for the first time. Thanks to the high significance achieved in the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> correlation signal, it is possible to discriminate between the predictions of different models of the N–Σ interaction and to accomplish a first determination of the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> scattering parameters.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"93 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variational quantum algorithms for permutation-based combinatorial problems: Optimal ansatz generation with applications to quadratic assignment problems and beyond 基于排列组合问题的变分量子算法:二次分配问题及其他应用的最优ansatz生成
IF 6.4 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2026-02-09 DOI: 10.22331/q-2026-02-09-1998
Dylan Laplace Mermoud, Andrea Simonetto, Sourour Elloumi
We present a quantum variational algorithm based on a novel circuit that generates all permutations that can be spanned by one- and two-qubits permutation gates. The construction of the circuits follows from group-theoretical results, most importantly the Bruhat decomposition of the group generated by the cx gates. These circuits require a number of qubits that scale logarithmically with the permutation dimension, and are therefore employable in near-term applications. We further augment the circuits with ancilla qubits to enlarge their span, and with these we build ansatze to tackle permutation-based optimization problems such as quadratic assignment problems, and graph isomorphisms. The resulting quantum algorithm, QuPer, is competitive with respect to classical heuristics and we could simulate its behavior up to a problem with 256 variables, requiring 20 qubits.
我们提出了一种基于新电路的量子变分算法,该电路可生成由一量子位和二量子位排列门跨越的所有排列。电路的构造遵循群论结果,最重要的是由cx门产生的群的Bruhat分解。这些电路需要许多量子位,这些量子位与排列维度呈对数比例,因此可以在近期应用中使用。我们进一步用辅助量子位扩展电路以扩大其跨度,并利用这些构建分析来解决基于排列的优化问题,如二次分配问题和图同构。由此产生的量子算法QuPer,与经典的启发式算法相比是有竞争力的,我们可以模拟它的行为,直到一个有256个变量的问题,需要20个量子位。
{"title":"Variational quantum algorithms for permutation-based combinatorial problems: Optimal ansatz generation with applications to quadratic assignment problems and beyond","authors":"Dylan Laplace Mermoud, Andrea Simonetto, Sourour Elloumi","doi":"10.22331/q-2026-02-09-1998","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-1998","url":null,"abstract":"We present a quantum variational algorithm based on a novel circuit that generates all permutations that can be spanned by one- and two-qubits permutation gates. The construction of the circuits follows from group-theoretical results, most importantly the Bruhat decomposition of the group generated by the cx gates. These circuits require a number of qubits that scale logarithmically with the permutation dimension, and are therefore employable in near-term applications. We further augment the circuits with ancilla qubits to enlarge their span, and with these we build ansatze to tackle permutation-based optimization problems such as quadratic assignment problems, and graph isomorphisms. The resulting quantum algorithm, QuPer, is competitive with respect to classical heuristics and we could simulate its behavior up to a problem with 256 variables, requiring 20 qubits.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"33 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chaotic Dynamics in Extremal Black Holes: A Challenge to the Chaos Bound 极端黑洞中的混沌动力学:对混沌界的挑战
IF 4.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-02-09 DOI: 10.1016/j.physletb.2026.140256
Surojit Dalui, Chiranjeeb Singha, Krishnakanta Bhattacharya
We investigate chaotic dynamics in extremal black holes by analyzing the motion of massless particles in both Reissner-Nordström and Kerr geometries. Two complementary approaches (i) taking the extremal limit of non-extremal solutions and (ii) working directly in the extremal background, yield consistent results. We find that, contrary to naive extrapolation of the Maldacena-Shenker-Stanford (MSS) chaos bound, the Lyapunov exponent remains positive even at zero temperature. For Reissner-Nordström black holes, chaos diminishes but persists at extremality, while for Kerr black holes it strengthens with increasing spin. These results demonstrate that extremal black holes exhibit residual chaotic dynamics that violate the MSS bound, establishing them as qualitatively distinct dynamical phases of gravity.
我们通过分析Reissner-Nordström和Kerr几何中无质量粒子的运动来研究极端黑洞中的混沌动力学。两种互补的方法(i)取非极值解的极值极限和(ii)直接在极值背景下工作,产生一致的结果。我们发现,与Maldacena-Shenker-Stanford (MSS)混沌界的朴素外推相反,即使在零温度下Lyapunov指数仍然是正的。对于Reissner-Nordström黑洞来说,混沌会减弱,但会持续到极值,而对于Kerr黑洞来说,混沌会随着自旋的增加而增强。这些结果表明,极端黑洞表现出违反MSS边界的残余混沌动力学,将它们定性为不同的引力动力学阶段。
{"title":"Chaotic Dynamics in Extremal Black Holes: A Challenge to the Chaos Bound","authors":"Surojit Dalui, Chiranjeeb Singha, Krishnakanta Bhattacharya","doi":"10.1016/j.physletb.2026.140256","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140256","url":null,"abstract":"We investigate chaotic dynamics in extremal black holes by analyzing the motion of massless particles in both Reissner-Nordström and Kerr geometries. Two complementary approaches (i) taking the extremal limit of non-extremal solutions and (ii) working directly in the extremal background, yield consistent results. We find that, contrary to naive extrapolation of the Maldacena-Shenker-Stanford (MSS) chaos bound, the Lyapunov exponent remains positive even at zero temperature. For Reissner-Nordström black holes, chaos diminishes but persists at extremality, while for Kerr black holes it strengthens with increasing spin. These results demonstrate that extremal black holes exhibit residual chaotic dynamics that violate the MSS bound, establishing them as qualitatively distinct dynamical phases of gravity.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"60 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Photonics J. Biophotonics Laser Photonics Rev. Comput. Phys. Commun. J. Comput. Phys. Prog. Part. Nucl. Phys. Prog. Quantum Electron. Solid State Commun. IEEE Trans. Plasma Sci. Acoust. Phys. Appl. Magn. Reson. Astrophys. Bull. ASTROPHYSICS+ Braz. J. Phys. B LEBEDEV PHYS INST+ Commun. Math. Phys. Dokl. Phys. EPJ QUANTUM TECHNOL Exp. Astron. Few-Body Syst. Found. Phys. FRONT PHYS-BEIJING Gen. Relativ. Gravitation Indian J. Phys. Int. J. Theor. Phys. Jetp Lett. J. Astrophys. Astron. J CONTEMP PHYS-ARME+ J. Exp. Theor. Phys. J. High Energy Phys. J. Low Temp. Phys. J. Russ. Laser Res. J. Stat. Phys. J. Supercond. Novel Magn. J KOREAN PHYS SOC Kinematics Phys. Celestial Bodies Lett. Math. Phys. Living Rev. Relativ. Living Rev. Sol. Phys. Moscow Univ. Phys. Bull. Opt. Rev. Opt. Spectrosc. Phys. At. Nucl. Phys. Part. Nucl. Phys. Solid State PHYS WAVE PHENOM Plasma Phys. Rep. Plasmonics Quantum Inf. Process. Russ. J. Math. Phys. Russ. Phys. J. SCI CHINA PHYS MECH Sol. Phys. Sol. Syst. Res. Tech. Phys. Tech. Phys. Lett. Theor. Math. Phys. ACTA PHYS SIN-CH ED Acta Phys. Pol. B 光学学报 光子学报 Acta Phys. Pol. A Adv. Phys. ADV PHYS-X Adv. Condens. Matter Phys. Adv. High Energy Phys. Am. J. Phys. Ann. Phys. Annu. Rev. Condens. Matter Phys. Annu. Rev. Nucl. Part. Sci. Appl. Phys. Express Appl. Phys. Lett. Annu. Rev. Astron. Astrophys. ARCH ACOUST APL Photonics Appl. Phys. Rev. Ann. Phys. ASTRON ASTROPHYS Astrophys. J. Suppl. Ser. Astrophys. Space Sci. ASTROBIOLOGY Can. J. Phys. 液晶与显示 Chin. Phys. C Chin. Phys. B Classical Quantum Gravity CHIN OPT LETT Chin. J. Phys. Chin. Phys. Lett. Condens. Matter Phys. Commun. Phys. Commun. Theor. Phys. Contrib. Plasma Phys. Curr. Appl Phys. ENTROPY-SWITZ EPL-EUROPHYS LETT EUR PHYS J-SPEC TOP EUR PHYS J-APPL PHYS Front. Phys. High Pressure Res.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1