Quantum computing offers significant potential for tackling complex problems, yet preparing quantum states from real-world data remains a critical challenge. We introduce the statistics-informed parameterized quantum circuit (SI-PQC), an approach specifically designed to efficiently prepare arbitrary statistical distributions. By leveraging statistical symmetries in data through the maximum entropy principle, SI-PQC encodes prior information with a fixed-structure circuit and tunable parameters, eliminating extensive pre-processing. This method achieves exponential resource savings in preparing mixture models, crucial for applications in statistics and machine learning. SI-PQC also supports variational learning within an optimally dimensioned training space, enhancing generalization, trainability and statistical interpretability. Numerical experiments confirm that SI-PQC can effectively prepare diverse distributions and accurately learn Gaussian mixture models, aligning closely with theoretical expectations. Applications in financial derivatives pricing and online risk analysis showcase SI-PQC’s practical advantages, with substantial improvements in end-to-end quantum resource efficiency and applicability to empirical data. As a versatile and resource-efficient subroutine, SI-PQC broadens the scope of quantum algorithms, especially in real-time, data-driven fields such as finance, online machine learning, and medical diagnostics.
{"title":"Statistics-informed parameterized quantum circuit: towards practical quantum state preparation and learning via maximum entropy principle","authors":"Xi-Ning Zhuang, Zhao-Yun Chen, Cheng Xue, Xiao-Fan Xu, Chao Wang, Huan-Yu Liu, Ming-Yang Tan, Tai-Ping Sun, Yun-Jie Wang, Jia-Xuan Zhang, Yu-Chun Wu, Guo-Ping Guo","doi":"10.1038/s41534-026-01191-5","DOIUrl":"https://doi.org/10.1038/s41534-026-01191-5","url":null,"abstract":"Quantum computing offers significant potential for tackling complex problems, yet preparing quantum states from real-world data remains a critical challenge. We introduce the statistics-informed parameterized quantum circuit (SI-PQC), an approach specifically designed to efficiently prepare arbitrary statistical distributions. By leveraging statistical symmetries in data through the maximum entropy principle, SI-PQC encodes prior information with a fixed-structure circuit and tunable parameters, eliminating extensive pre-processing. This method achieves exponential resource savings in preparing mixture models, crucial for applications in statistics and machine learning. SI-PQC also supports variational learning within an optimally dimensioned training space, enhancing generalization, trainability and statistical interpretability. Numerical experiments confirm that SI-PQC can effectively prepare diverse distributions and accurately learn Gaussian mixture models, aligning closely with theoretical expectations. Applications in financial derivatives pricing and online risk analysis showcase SI-PQC’s practical advantages, with substantial improvements in end-to-end quantum resource efficiency and applicability to empirical data. As a versatile and resource-efficient subroutine, SI-PQC broadens the scope of quantum algorithms, especially in real-time, data-driven fields such as finance, online machine learning, and medical diagnostics.","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"7 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146152299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1016/j.physletb.2026.140265
Yue Li, Fan Liu, Rui Wang, Jie Yang
By using the integrable lattice model proposed by Maulik and Okounkov, we derive the (higher) Hamiltonians of the (generalized) trigonometric Calogero-Sutherland models. Then in terms of these (higher) Hamiltonians, we further construct certain nested structures and derive the commutative operators which coincide with the (higher) Hamiltonians of the (generalized) rational Calogero-Sutherland models.
{"title":"The (higher) Hamiltonians of (generalized) trigonometric and rational Calogero-Sutherland models by MO R-matrix","authors":"Yue Li, Fan Liu, Rui Wang, Jie Yang","doi":"10.1016/j.physletb.2026.140265","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140265","url":null,"abstract":"By using the integrable lattice model proposed by Maulik and Okounkov, we derive the (higher) Hamiltonians of the (generalized) trigonometric Calogero-Sutherland models. Then in terms of these (higher) Hamiltonians, we further construct certain nested structures and derive the commutative operators which coincide with the (higher) Hamiltonians of the (generalized) rational Calogero-Sutherland models.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"2 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.22331/q-2026-02-09-2001
Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen
Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.
{"title":"Minimising the number of edges in LC-equivalent graph states","authors":"Hemant Sharma, Kenneth Goodenough, Johannes Borregaard, Filip Rozpędek, Jonas Helsen","doi":"10.22331/q-2026-02-09-2001","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-2001","url":null,"abstract":"Graph states are a powerful class of entangled states with numerous applications in quantum communication and quantum computation. Local Clifford (LC) operations that map one graph state to another can alter the structure of the corresponding graphs, including changing the number of edges. Here, we tackle the associated edge-minimisation problem: finding graphs with the minimum number of edges in the LC-equivalence class of a given graph. Such graphs are called minimum edge representatives (MER) and are crucial for minimising the resources required to create a graph state. We leverage Bouchet's algebraic formulation of LC-equivalence to encode the edge-minimisation problem as an integer linear program (EDM-ILP). We further propose a simulated annealing (EDM-SA) approach guided by the local clustering coefficient for edge minimisation. We identify new MERs for graph states with up to 16 qubits by combining EDM-SA and EDM-ILP. We extend the ILP to weighted-edge minimisation, where each edge has an associated weight, and prove that this problem is NP-complete. Finally, we employ our tools to minimise the resources required to create all-photonic generalised repeater graph states using fusion operations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"9 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen
The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.
{"title":"Tunable Visible/NIR Dual-Narrowband Organic Photodetectors with Photomultiplication for Interference-Resistant Optical Communication","authors":"Xi Luo, Xin Hu, Ying Lu, Yifan Ji, Lu Lu, Guangyu Zhou, Dongdong Chu, Ning Li, Xiubao Sui, Qian Chen","doi":"10.1002/lpor.202502956","DOIUrl":"https://doi.org/10.1002/lpor.202502956","url":null,"abstract":"The ability to detect narrowband optical signals is important in optical communication, precise target identification, etc. This study proposes a method to achieve dual-narrowband visible/NIR detection with gain based on the synergistic regulation of optical and electrical properties of a single device. The device integrates two distinct bulk-heterojunctions (BHJs), one with visible and the other with NIR absorption, in a back-to-back configuration. This design enables bias-switchable visible/NIR dual-band detection with photomultiplication, which is controlled by regulating carrier injection from the external circuit. Furthermore, by incorporating an optical microcavity to modulate the light field distribution, tunable visible/NIR dual-narrowband photodetection is achieved, with a capability to switch the two wavelengths by changing the polarity of bias. For example, narrowband responses at 450 and 810 nm are achieved, where the two modes can be switched by changing the bias polarity. A peak external quantum efficiency (EQE) of 1050% is obtained at 450 nm with a full width at half maximum (FWHM) of 50 nm. A peak EQE of 130% with an FWHM of 75 nm is observed at 810 nm. Notably, this device demonstrates excellent performance in anti-interference optical communication, operating without the need for additional optical filters.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":11.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1038/s42254-026-00920-1
As chatbots become more ubiquitous in our everyday lives, we remind our readers that good writing comes from knowing what you want to say.
随着聊天机器人在我们的日常生活中变得越来越普遍,我们提醒我们的读者,好的写作来自于知道你想说什么。
{"title":"Writing in the age of chatbots","authors":"","doi":"10.1038/s42254-026-00920-1","DOIUrl":"10.1038/s42254-026-00920-1","url":null,"abstract":"As chatbots become more ubiquitous in our everyday lives, we remind our readers that good writing comes from knowing what you want to say.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"8 2","pages":"65-65"},"PeriodicalIF":39.5,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-026-00920-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146148336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1021/acsphotonics.5c02612
Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han
The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.
{"title":"Bias-Free Functional Terahertz Photoconductive Emitter","authors":"Haidi Qiu, Xueqian Zhang, Qingwei Wang, Xi Feng, Li Niu, Quan Xu, Weili Zhang, Jiaguang Han","doi":"10.1021/acsphotonics.5c02612","DOIUrl":"https://doi.org/10.1021/acsphotonics.5c02612","url":null,"abstract":"The ability to sculpt terahertz (THz) wavefronts in the generation process is crucial for communication and imaging applications. However, related devices, known as functional THz emitters with wavefront modulation capabilities, remain scarce. Here, we propose an approach for directly generating specific THz wavefronts based on a bias-free photoconductive THz emitter using bimetal antennas. The emitted THz radiation arises from the drift current driven by the lateral Schottky (LS) barrier and the lateral photo-Dember (LPD) effect. Meanwhile, by precisely engineering the geometric parameters and orientation of the antenna, we achieve continuous control over both the amplitude and phase of the emitted THz waves, thus, allowing the flexible control of the THz wavefront. Our method enables broadband THz wavefront control with a simple design, low fabrication cost, and suitability for large-area processing.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"35 1","pages":""},"PeriodicalIF":7.0,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1016/j.physletb.2026.140259
Nikita Tselousov
We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.
{"title":"Algebra of operators for Q-Schur polynomials","authors":"Nikita Tselousov","doi":"10.1016/j.physletb.2026.140259","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140259","url":null,"abstract":"We consider algebras acting on Schur and Q-Schur polynomials, corresponding to Kadomtsev–Petviashvili (KP) and BKP hierarchies. We present them in the spirit of affine Yangians, paying special attention to commutative subalgebras, box additivity property of eigenvalues and single hook expansion of operators.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"51 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.1016/j.physletb.2026.140252
ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, ZUL. Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelshäuser, S. Arcelli, R. Arnaldi, J.G.M.C.A. Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, M.D. Azmi, H. Baba, A.R.J. Babu, A. Badalà, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaföldi, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, L.G.E. Beltran, Y.A.V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y.E.M. Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M.F.T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, P. Camerini, M.T. Camerlingo, F.D.M. Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L.A.D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J.W.O. Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, T. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, G. Clai, F. Colamaria, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G.G.A. de Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divia, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, A. Feliciello, G. Feofilov, A. Fernández Téllez, L. Ferrandi, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M.B. Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Glässel, E. Glimos, V. Gonzalez, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, S. Gross-Bölting, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, J. Haidenbauer, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, A. Hasan, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I.P.M. Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, M. Ivanov, M. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, E.P. Jamro, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A.A.P. Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, A. Kalinak, A. Kalweit, Y. Kamiya, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, J.T. Kinner, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M.B. Knuesel, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, A. Kuznetsov, M.J. Kweon, Y. Kwon, S.L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, E. Laudi, L. Lautner, R.A.N. Laveaga, R. Lavicka, R. Lea, J.B. Lebert, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G.S.S. Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, O. Lubynets, F.V. Lugo, J. Luo, G. Luparello, M.A.T. Johnson, J.M. Friedrich, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, R.S. Manhart, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M.P.P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, A. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, J.L. Mayo, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J.E.M. Mendez, E. Meninno, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miškowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, J.S. Potgieter, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Pulawski, L. Quaglia, A.M.K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-Álvarez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, A. Rustamov, Y. Ryabov, A. Rybicki, L.C.V. Ryder, G. Ryu, J. Ryu, W. Rzesa, B. Sabiu, R. Sadek, S. Sadhu, S. Sadovsky, A. Saha, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, U. Savino, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, W.D. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R.J.M. Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, C. Sporleder, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, A.A.P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L.V.R. van Doremalen, M. van Leeuwen, C.A. van Veen, R.J.G. van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M.M.O. Virta, A. Vodopyanov, M.A. Völkl, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, J. Witte, M. Wojnar, J.R. Wright, C.-T. Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K. Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, A. Zingaretti, S.C. Zugravel, N. Zurlo
In this letter, the first measurement of the femtoscopic correlation of protons and Σ+ hyperons is presented and used to study the p–Σ+ interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at s=13 TeV. The Σ+ hyperons are reconstructed using a missing-mass approach in the decay channel to p+π0 with π0→γγ, while both Σ+ and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p–Σ+ correlation function for the first time. Thanks to the high significance achieved in the p–Σ+ correlation signal, it is possible to discriminate between the predictions of different models of the N–Σ interaction and to accomplish a first determination of the p–Σ+ scattering parameters.
{"title":"Measurement of the p–[formula omitted] correlation function in pp collisions at [formula omitted] TeV","authors":"ALICE Collaboration, I.J. Abualrob, S. Acharya, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, I. Ahuja, ZUL. Akbar, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, R. Alfaro Molina, B. Ali, A. Alici, A. Alkin, J. Alme, G. Alocco, T. Alt, A.R. Altamura, I. Altsybeev, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, H. Appelshäuser, S. Arcelli, R. Arnaldi, J.G.M.C.A. Arneiro, I.C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, M.D. Azmi, H. Baba, A.R.J. Babu, A. Badalà, J. Bae, Y. Bae, Y.W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, S. Bangalia, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G.G. Barnaföldi, L.S. Barnby, E. Barreau, V. Barret, L. Barreto, K. Barth, E. Bartsch, N. Bastid, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J.L. Bazo Alba, I.G. Bearden, P. Becht, D. Behera, S. Behera, I. Belikov, V.D. Bella, F. Bellini, R. Bellwied, L.G.E. Beltran, Y.A.V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, L. Bernardinis, L. Betev, P.P. Bhaduri, T. Bhalla, A. Bhasin, B. Bhattacharjee, S. Bhattarai, L. Bianchi, J. Bielčík, J. Bielčíková, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, D. Blau, M.B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P.M. Bond, G. Bonomi, H. Borel, A. Borissov, A.G. Borquez Carcamo, E. Botta, Y.E.M. Bouziani, D.C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G.E. Bruno, V.D. Buchakchiev, M.D. Buckland, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, C. Carr, J.C. Cabanillas Noris, M.F.T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J.M.M. Camacho, P. Camerini, M.T. Camerlingo, F.D.M. Canedo, S. Cannito, S.L. Cantway, M. Carabas, F. Carnesecchi, L.A.D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, J.W.O. Chan, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D.D. Chinellato, F. Chinu, E.S. Chizzali, J. Cho, S. Cho, P. Chochula, Z.A. Chochulska, P. Christakoglou, C.H. Christensen, T. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, G. Cimador, F. Cindolo, G. Clai, F. Colamaria, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J.G. Contreras, M.L. Coquet, P. Cortese, M.R. Cosentino, F. Costa, S. Costanza, P. Crochet, M.M. Czarnynoga, A. Dainese, G. Dange, M.C. Danisch, A. Danu, P. Das, S. Das, A.R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, G.G.A. de Souza, P. Dhankher, D. Di Bari, M. Di Costanzo, A. Di Mauro, B. Di Ruzza, B. Diab, Y. Ding, J. Ditzel, R. Divia, U. Dmitrieva, A. Dobrin, B. Dönigus, L. Döpper, J.M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T.M. Eder, R.J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, T. Fang, A. Fantoni, M. Fasel, A. Feliciello, G. Feofilov, A. Fernández Téllez, L. Ferrandi, A. Ferrero, C. Ferrero, A. Ferretti, V.J.G. Feuillard, D. Finogeev, F.M. Fionda, A.N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, R. Forynski, E. Fragiacomo, H. Fribert, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J.J. Gaardhøje, M. Gagliardi, A.M. Gago, T. Gahlaut, C.D. Galvan, S. Gami, P. Ganoti, C. Garabatos, J.M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H.M. Gaur, A. Gautam, M.B. Gay Ducati, M. Germain, R.A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S.K. Giri, P. Giubellino, P. Giubilato, P. Glässel, E. Glimos, V. Gonzalez, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L.K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, O.S. Groettvik, F. Grosa, S. Gross-Bölting, J.F. Grosse-Oetringhaus, R. Grosso, D. Grund, N.A. Grunwald, R. Guernane, M. Guilbaud, K. Gulbrandsen, J.K. Gumprecht, T. Gündem, T. Gunji, J. Guo, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, J. Haidenbauer, F.U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B.G. Hanley, R. Hannigan, J. Hansen, J.W. Harris, A. Harton, M.V. Hartung, A. Hasan, H. Hassan, D. Hatzifotiadou, P. Hauer, L.B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S.G. Hernandez, G. Herrera Corral, K.F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I.P.M. Hobus, F.W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L.M. Huhta, T.J. Humanic, V. Humlova, A. Hutson, D. Hutter, M.C. Hwang, R. Ilkaev, M. Inaba, M. Ippolitov, A. Isakov, T. Isidori, M.S. Islam, M. Ivanov, M. Ivanov, K.E. Iversen, J.G. Kim, M. Jablonski, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M.J. Jakubowska, E.P. Jamro, D.M. Janik, M.A. Janik, S. Ji, S. Jia, T. Jiang, A.A.P. Jimenez, S. Jin, F. Jonas, D.M. Jones, J.M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, A. Kalinak, A. Kalweit, Y. Kamiya, A. Karasu Uysal, N. Karatzenis, O. Karavichev, T. Karavicheva, M.J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S.S. Khade, A.M. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D.J. Kim, D. Kim, E.J. Kim, G. Kim, H. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, J.T. Kinner, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, A. Kluge, M.B. Knuesel, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, P.J. Konopka, G. Kornakov, M. Korwieser, S.D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, E. Kryshen, V. Kučera, C. Kuhn, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, M. Kuo, P. Kurashvili, A.B. Kurepin, S. Kurita, A. Kuryakin, S. Kushpil, A. Kuznetsov, M.J. Kweon, Y. Kwon, S.L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A.R. Landou, R. Langoy, E. Laudi, L. Lautner, R.A.N. Laveaga, R. Lavicka, R. Lea, J.B. Lebert, H. Lee, I. Legrand, G. Legras, A.M. Lejeune, T.M. Lelek, I. León Monzón, M.M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B.E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S.H. Lim, S. Lin, V. Lindenstruth, C. Lippmann, D. Liskova, D.H. Liu, J. Liu, G.S.S. Liveraro, I.M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, W. Lu, Z. Lu, O. Lubynets, F.V. Lugo, J. Luo, G. Luparello, M.A.T. Johnson, J.M. Friedrich, Y.G. Ma, M. Mager, A. Maire, E.M. Majerz, M.V. Makariev, G. Malfattore, N.M. Malik, N. Malik, S.K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S.K. Mandal, A. Manea, R.S. Manhart, V. Manko, A.K. Manna, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R.W. Marcjan, G.V. Margagliotti, A. Margotti, A. Marín, C. Markert, P. Martinengo, M.I. Martínez, G. Martínez García, M.P.P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, A. Massen, A. Mastroserio, L. Mattei, S. Mattiazzo, A. Matyja, J.L. Mayo, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J.E.M. Mendez, E. Meninno, M.W. Menzel, M. Meres, L. Micheletti, D. Mihai, D.L. Mihaylov, A.U. Mikalsen, K. Mikhaylov, L. Millot, N. Minafra, D. Miškowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M.A. Molander, M.M. Mondal, S. Monira, D.A. Moreira De Godoy, A. Morsch, T. Mrnjavac, S. Mrozinski, V. Muccifora, S. Muhuri, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, L. Musa, J. Musinsky, J.W. Myrcha, N.B. Sundstrom, B. Naik, A.I. Nambrath, B.K. Nandi, R. Nania, E. Nappi, A.F. Nassirpour, V. Nastase, A. Nath, N.F. Nathanson, C. Nattrass, K. Naumov, A. Neagu, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B.S. Nielsen, E.G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M.R. Ockleton, M. Ogino, S. Oh, A. Ohlson, M. Oida, V.A. Okorokov, J. Oleniacz, C. Oppedisano, A. Ortiz Velasquez, H. Osanai, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, P. Panigrahi, C. Pantouvakis, H. Park, J. Park, S. Park, T.Y. Park, J.E. Parkkila, P.B. Pati, Y. Patley, R.N. Patra, P. Paudel, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G.M. Perez, Y. Pestov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D.K. Plociennik, M.G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, J.S. Potgieter, I.Y. Pozos, K.K. Pradhan, S.K. Prasad, S. Prasad, R. Preghenella, F. Prino, C.A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Pulawski, L. Quaglia, A.M.K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, N. Ramasubramanian, L. Ramello, C.O. Ramírez-Álvarez, M. Rasa, S.S. Räsänen, R. Rath, M.P. Rauch, I. Ravasenga, K.F. Read, C. Reckziegel, A.R. Redelbach, K. Redlich, C.A. Reetz, H.D. Regules-Medel, A. Rehman, F. Reidt, H.A. Reme-Ness, K. Reygers, R. Ricci, M. Richter, A.A. Riedel, W. Riegler, A.G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M.V. Rodriguez, M. Rodríguez Cahuantzi, K. Roed, R. Rogalev, E. Rogochaya, D. Rohr, D. Röhrich, S. Rojas Torres, P.S. Rokita, G. Romanenko, F. Ronchetti, D. Rosales Herrera, E.D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J.A. Rudolph, D. Ruggiano, R. Rui, P.G. Russek, A. Rustamov, Y. Ryabov, A. Rybicki, L.C.V. Ryder, G. Ryu, J. Ryu, W. Rzesa, B. Sabiu, R. Sadek, S. Sadhu, S. Sadovsky, A. Saha, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P.K. Sahu, J. Saini, S. Sakai, S. Sambyal, D. Samitz, I. Sanna, T.B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V.M. Sarti, U. Savino, S. Sawan, E. Scapparone, J. Schambach, H.S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. Schmidt, N.V. Schmidt, A.R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J.E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T.J. Shaba, A. Shabetai, R. Shahoyan, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, T. Sharma, U. Sharma, O. Sheibani, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T.F. Silva, W.D. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V.K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T.B. Skaali, G. Skorodumovs, N. Smirnov, R.J.M. Snellings, E.H. Solheim, C. Sonnabend, J.M. Sonneveld, F. Soramel, A.B. Soto-Hernandez, R. Spijkers, C. Sporleder, I. Sputowska, J. Staa, J. Stachel, I. Stan, T. Stellhorn, S.F. Stiefelmaier, D. Stocco, I. Storehaug, N.J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, A.A.P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L.H. Tabares, S.F. Taghavi, J. Takahashi, G.J. Tambave, Z. Tang, J. Tanwar, J.D. Tapia Takaki, N. Tapus, L.A. Tarasovicova, M.G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, D. Thakur, S. Thakur, M. Thogersen, D. Thomas, N. Tiltmann, A.R. Timmins, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V.V. Torres, A. Trifiró, T. Triloki, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W.H. Trzaska, T.P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T.S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, M. Urioni, G.L. Usai, M. Vaid, M. Vala, N. Valle, L.V.R. van Doremalen, M. van Leeuwen, C.A. van Veen, R.J.G. van Weelden, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M.M.O. Virta, A. Vodopyanov, M.A. Völkl, S.A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. Weiglhofer, S.C. Wenzel, J.P. Wessels, P.K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G.A. Willems, B. Windelband, J. Witte, M. Wojnar, J.R. Wright, C.-T. Wu, W. Wu, Y. Wu, K. Xiong, Z. Xiong, L. Xu, R. Xu, A. Yadav, A.K. Yadav, Y. Yamaguchi, S. Yang, S. Yang, S. Yano, E.R. Yeats, J. Yi, R. Yin, Z. Yin, I.-K. Yoo, J.H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, P. Závada, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, A. Zingaretti, S.C. Zugravel, N. Zurlo","doi":"10.1016/j.physletb.2026.140252","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140252","url":null,"abstract":"In this letter, the first measurement of the femtoscopic correlation of protons and <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> hyperons is presented and used to study the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> interaction. The measurement is performed with the ALICE detector in high-multiplicity triggered pp collisions at <mml:math altimg=\"si3.svg\"><mml:mrow><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo linebreak=\"goodbreak\">=</mml:mo><mml:mn>13</mml:mn></mml:mrow></mml:math> TeV. The <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> hyperons are reconstructed using a missing-mass approach in the decay channel to <mml:math altimg=\"si28.svg\"><mml:mrow><mml:mi mathvariant=\"normal\">p</mml:mi><mml:mo linebreak=\"goodbreak\">+</mml:mo><mml:msup><mml:mi>π</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:mrow></mml:math> with <mml:math altimg=\"si29.svg\"><mml:mrow><mml:msup><mml:mi>π</mml:mi><mml:mn>0</mml:mn></mml:msup><mml:mo>→</mml:mo><mml:mi>γ</mml:mi><mml:mi>γ</mml:mi></mml:mrow></mml:math>, while both <mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> and protons are identified using a machine learning approach. These techniques result in a high reconstruction efficiency and purity, which allows the measurement of the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> correlation function for the first time. Thanks to the high significance achieved in the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> correlation signal, it is possible to discriminate between the predictions of different models of the N–Σ interaction and to accomplish a first determination of the p–<mml:math altimg=\"si1.svg\"><mml:msup><mml:mstyle mathvariant=\"normal\"><mml:mi>Σ</mml:mi></mml:mstyle><mml:mo>+</mml:mo></mml:msup></mml:math> scattering parameters.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"93 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-02-09DOI: 10.22331/q-2026-02-09-1998
Dylan Laplace Mermoud, Andrea Simonetto, Sourour Elloumi
We present a quantum variational algorithm based on a novel circuit that generates all permutations that can be spanned by one- and two-qubits permutation gates. The construction of the circuits follows from group-theoretical results, most importantly the Bruhat decomposition of the group generated by the cx gates. These circuits require a number of qubits that scale logarithmically with the permutation dimension, and are therefore employable in near-term applications. We further augment the circuits with ancilla qubits to enlarge their span, and with these we build ansatze to tackle permutation-based optimization problems such as quadratic assignment problems, and graph isomorphisms. The resulting quantum algorithm, QuPer, is competitive with respect to classical heuristics and we could simulate its behavior up to a problem with 256 variables, requiring 20 qubits.
{"title":"Variational quantum algorithms for permutation-based combinatorial problems: Optimal ansatz generation with applications to quadratic assignment problems and beyond","authors":"Dylan Laplace Mermoud, Andrea Simonetto, Sourour Elloumi","doi":"10.22331/q-2026-02-09-1998","DOIUrl":"https://doi.org/10.22331/q-2026-02-09-1998","url":null,"abstract":"We present a quantum variational algorithm based on a novel circuit that generates all permutations that can be spanned by one- and two-qubits permutation gates. The construction of the circuits follows from group-theoretical results, most importantly the Bruhat decomposition of the group generated by the cx gates. These circuits require a number of qubits that scale logarithmically with the permutation dimension, and are therefore employable in near-term applications. We further augment the circuits with ancilla qubits to enlarge their span, and with these we build ansatze to tackle permutation-based optimization problems such as quadratic assignment problems, and graph isomorphisms. The resulting quantum algorithm, QuPer, is competitive with respect to classical heuristics and we could simulate its behavior up to a problem with 256 variables, requiring 20 qubits.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"33 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146138509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate chaotic dynamics in extremal black holes by analyzing the motion of massless particles in both Reissner-Nordström and Kerr geometries. Two complementary approaches (i) taking the extremal limit of non-extremal solutions and (ii) working directly in the extremal background, yield consistent results. We find that, contrary to naive extrapolation of the Maldacena-Shenker-Stanford (MSS) chaos bound, the Lyapunov exponent remains positive even at zero temperature. For Reissner-Nordström black holes, chaos diminishes but persists at extremality, while for Kerr black holes it strengthens with increasing spin. These results demonstrate that extremal black holes exhibit residual chaotic dynamics that violate the MSS bound, establishing them as qualitatively distinct dynamical phases of gravity.
{"title":"Chaotic Dynamics in Extremal Black Holes: A Challenge to the Chaos Bound","authors":"Surojit Dalui, Chiranjeeb Singha, Krishnakanta Bhattacharya","doi":"10.1016/j.physletb.2026.140256","DOIUrl":"https://doi.org/10.1016/j.physletb.2026.140256","url":null,"abstract":"We investigate chaotic dynamics in extremal black holes by analyzing the motion of massless particles in both Reissner-Nordström and Kerr geometries. Two complementary approaches (i) taking the extremal limit of non-extremal solutions and (ii) working directly in the extremal background, yield consistent results. We find that, contrary to naive extrapolation of the Maldacena-Shenker-Stanford (MSS) chaos bound, the Lyapunov exponent remains positive even at zero temperature. For Reissner-Nordström black holes, chaos diminishes but persists at extremality, while for Kerr black holes it strengthens with increasing spin. These results demonstrate that extremal black holes exhibit residual chaotic dynamics that violate the MSS bound, establishing them as qualitatively distinct dynamical phases of gravity.","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"60 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146146653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}