Pub Date : 2025-03-01Epub Date: 2025-02-21DOI: 10.1007/s13205-025-04221-9
Ping Xu, Jun Chen, Dongwen Li, Lu Shen, Yangyi Zhang, Ruiting Peng, Yong He
Oral cancer poses a significant global health challenge, with increasing incidence rates and substantial morbidity and mortality. This study aimed to investigate the antiproliferative effects of cirsiliol in human oral cancer cells. Results from the MTT cell viability assay showed that cirsiliol significantly (p < 0.05) inhibited the growth of all oral cancer cell lines tested, with the IC50 values ranging from 12 to 25 μM. The lowest IC50 of 12 μM was observed against SCC-1 and SCC-25 cell lines, while the IC50 for normal hTRET-OME cells was 75 μM, approximately 6 times higher than against the oral cancer cells. Further molecular analysis revealed that cirsiliol disrupted cellular morphology in SCC-1 and SCC-25 cells with minor effects on the normal hTRET-OME cells. Annexin V/PI staining indicated that the percentage of SCC-1 and SCC-25 apoptotic cells increased significantly from 4.70 and 5.27% in controls to 31.4 and 35.28% at 24 μM cirsiliol, respectively. This effect correlated with an upregulation of Bax, downregulation of Bcl-2, and increased p53 expression. Nonetheless, the apoptotic effects of cirsiliol were considerably lower in normal hTRET-OME cells. Western blotting together with molecular docking analysis suggested that cirsiliol may inhibit the expression of topoisomerase I. Additionally, wound healing and transwell assays demonstrated that cirsiliol significantly (p < 0.05) suppressed the migration and invasion of SCC-1 and SCC-25 cells. In conclusion, these findings indicate that cirsiliol induces apoptosis in oral cancer cells through the inhibition of topoisomerase I.
{"title":"Cirsiliol suppresses the proliferation of human oral cancer cells by targeting topoisomerase I.","authors":"Ping Xu, Jun Chen, Dongwen Li, Lu Shen, Yangyi Zhang, Ruiting Peng, Yong He","doi":"10.1007/s13205-025-04221-9","DOIUrl":"10.1007/s13205-025-04221-9","url":null,"abstract":"<p><p>Oral cancer poses a significant global health challenge, with increasing incidence rates and substantial morbidity and mortality. This study aimed to investigate the antiproliferative effects of cirsiliol in human oral cancer cells. Results from the MTT cell viability assay showed that cirsiliol significantly (<i>p</i> < 0.05) inhibited the growth of all oral cancer cell lines tested, with the IC<sub>50</sub> values ranging from 12 to 25 μM. The lowest IC<sub>50</sub> of 12 μM was observed against SCC-1 and SCC-25 cell lines, while the IC<sub>50</sub> for normal hTRET-OME cells was 75 μM, approximately 6 times higher than against the oral cancer cells. Further molecular analysis revealed that cirsiliol disrupted cellular morphology in SCC-1 and SCC-25 cells with minor effects on the normal hTRET-OME cells. Annexin V/PI staining indicated that the percentage of SCC-1 and SCC-25 apoptotic cells increased significantly from 4.70 and 5.27% in controls to 31.4 and 35.28% at 24 μM cirsiliol, respectively. This effect correlated with an upregulation of Bax, downregulation of Bcl-2, and increased p53 expression. Nonetheless, the apoptotic effects of cirsiliol were considerably lower in normal hTRET-OME cells. Western blotting together with molecular docking analysis suggested that cirsiliol may inhibit the expression of topoisomerase I. Additionally, wound healing and transwell assays demonstrated that cirsiliol significantly (<i>p</i> < 0.05) suppressed the migration and invasion of SCC-1 and SCC-25 cells. In conclusion, these findings indicate that cirsiliol induces apoptosis in oral cancer cells through the inhibition of topoisomerase I.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 3","pages":"65"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845633/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143482037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.
{"title":"Pathogenesis related-1 proteins in plant defense: regulation and functional diversity.","authors":"Talha Javed, Wenzhi Wang, Benpeng Yang, Linbo Shen, Tingting Sun, San-Ji Gao, Shuzhen Zhang","doi":"10.1080/07388551.2024.2344583","DOIUrl":"10.1080/07388551.2024.2344583","url":null,"abstract":"<p><p>Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"305-313"},"PeriodicalIF":8.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-05-23DOI: 10.1007/s10047-024-01449-9
Hayato Ise, Kyohei Oyama, Ryohei Ushioda, Aina Hirofuji, Keisuke Kamada, Yuri Yoshida, Payam Akhyari, Hiroyuki Kamiya
It is believed that a lower temperature setting of hypothermic circulatory arrest (HCA) in thoracic aortic surgery causes coagulopathy, resulting in excessive bleeding. However, experimental studies that eliminate clinical factors are lacking. The objective of this study is to investigate the influence of the temperature setting of HCA on coagulation in a pig model. Ten pigs were divided into the following two groups: moderate temperature at 28 °C (group M, n = 5) or lower temperature at 20 °C (group L, n = 5). Two hours of HCA during a total of 4 h of cardiopulmonary bypass (CPB) were performed. Blood samples were obtained at the beginning (T1) and the end (T2) of the surgery, and coagulation capability was analyzed through standard laboratory tests (SLTs) and rotational thromboelastometry (ROTEM). In SLTs, hemoglobin, fibrinogen, platelet count, prothrombin time, and activated partial thromboplastin time were analyzed. In ROTEM analyses, clotting time and clot formation time of EXTEM, maximum clot firmness (MCF), and maximum clot elasticity (MCE) of EXTEM and FIBTEM were analyzed. Fibrinogen decreased significantly in both groups (group M, p = 0.008; group L, p = 0.0175) at T2, and FIBTEM MCF and MCE also decreased at T2. There were no differences regarding changes in parameters of SLTs and ROTEM between groups. CPB decreases coagulation capacity, contributed by fibrinogen. However, a lower temperature setting of HCA at 20 °C for 2 h did not significantly affect coagulopathy compared to that of HCA at 28 °C after re-warming to 37 °C.
{"title":"Hypothermic circulatory arrest at 20 ℃ does not deteriorate coagulopathy compared to 28 ℃ in a pig model.","authors":"Hayato Ise, Kyohei Oyama, Ryohei Ushioda, Aina Hirofuji, Keisuke Kamada, Yuri Yoshida, Payam Akhyari, Hiroyuki Kamiya","doi":"10.1007/s10047-024-01449-9","DOIUrl":"10.1007/s10047-024-01449-9","url":null,"abstract":"<p><p>It is believed that a lower temperature setting of hypothermic circulatory arrest (HCA) in thoracic aortic surgery causes coagulopathy, resulting in excessive bleeding. However, experimental studies that eliminate clinical factors are lacking. The objective of this study is to investigate the influence of the temperature setting of HCA on coagulation in a pig model. Ten pigs were divided into the following two groups: moderate temperature at 28 °C (group M, n = 5) or lower temperature at 20 °C (group L, n = 5). Two hours of HCA during a total of 4 h of cardiopulmonary bypass (CPB) were performed. Blood samples were obtained at the beginning (T1) and the end (T2) of the surgery, and coagulation capability was analyzed through standard laboratory tests (SLTs) and rotational thromboelastometry (ROTEM). In SLTs, hemoglobin, fibrinogen, platelet count, prothrombin time, and activated partial thromboplastin time were analyzed. In ROTEM analyses, clotting time and clot formation time of EXTEM, maximum clot firmness (MCF), and maximum clot elasticity (MCE) of EXTEM and FIBTEM were analyzed. Fibrinogen decreased significantly in both groups (group M, p = 0.008; group L, p = 0.0175) at T2, and FIBTEM MCF and MCE also decreased at T2. There were no differences regarding changes in parameters of SLTs and ROTEM between groups. CPB decreases coagulation capacity, contributed by fibrinogen. However, a lower temperature setting of HCA at 20 °C for 2 h did not significantly affect coagulopathy compared to that of HCA at 28 °C after re-warming to 37 °C.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":"36-42"},"PeriodicalIF":1.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2025-01-26DOI: 10.1016/j.compbiomed.2025.109704
Luca Zedda, Andrea Loddo, Cecilia Di Ruberto
Background: Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency.
Methods: We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification.
Results: The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility.
Conclusion: This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.
{"title":"A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario.","authors":"Luca Zedda, Andrea Loddo, Cecilia Di Ruberto","doi":"10.1016/j.compbiomed.2025.109704","DOIUrl":"10.1016/j.compbiomed.2025.109704","url":null,"abstract":"<p><strong>Background: </strong>Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency.</p><p><strong>Methods: </strong>We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification.</p><p><strong>Results: </strong>The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility.</p><p><strong>Conclusion: </strong>This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"186 ","pages":"109704"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143051711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2025-01-27DOI: 10.1016/j.compbiomed.2025.109739
Abdul Aziz Vaqar Hulleck, Muhammad Abdullah, AbdelSalam Tareq Alkhalaileh, Tao Liu, Dhanya Menoth Mohan, Rateb Katmah, Kinda Khalaf, Marwan El-Rich
Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals. Human motion data was collected using seventeen body worn inertial measuring units for nineteen (19) healthy subjects. The results indicate that variations in segmental masses and centers of mass, resulting from diverse mass scaling techniques, significantly affect ground reaction force estimations in obese subjects, particularly in the vertical component, with a root mean square error (RMSE) of 54.7 ± 23.8 %BW; followed by 12.3 ± 8.0 %BW (medio-lateral); and 6.2 ± 3.2 %BW (antero-posterior). The vertical component of hip, knee, and ankle joint reaction forces also exhibit sensitivity to personalized mass distribution variations. Importantly, the degree of deviation in model predictions increases with body mass index. Statistical analysis using single sample Wilcoxon-Signed Rank test for non-normal data and t-test for normal data, revealed significant differences (p < 0.05) in the computed errors in kinetic parameters between the two scaling approaches. The body shape-based scaling approach significantly impacts musculoskeletal modeling in clinical applications where the upper body mass distribution is crucial, such as in spinal deformities, obesity, and low back pain. This approach accounts for the body shape inherent variability within the same BMI category and enhances the predicted joint kinetics.
{"title":"Musculoskeletal model predictions sensitivity to upper body mass scaling during gait.","authors":"Abdul Aziz Vaqar Hulleck, Muhammad Abdullah, AbdelSalam Tareq Alkhalaileh, Tao Liu, Dhanya Menoth Mohan, Rateb Katmah, Kinda Khalaf, Marwan El-Rich","doi":"10.1016/j.compbiomed.2025.109739","DOIUrl":"10.1016/j.compbiomed.2025.109739","url":null,"abstract":"<p><p>Musculoskeletal modeling based on inverse dynamics provides a cost-effective non-invasive means for calculating intersegmental joint reaction forces and moments, solely relying on kinematic data, easily obtained from smart wearables. On the other hand, the accuracy and precision of such models strongly hinge upon the selected scaling methodology tailored to subject-specific data. This study investigates the impact of upper body mass distribution on internal and external kinetics computed using a comprehensive musculoskeletal model during level walking in both normal weight and obese individuals. Human motion data was collected using seventeen body worn inertial measuring units for nineteen (19) healthy subjects. The results indicate that variations in segmental masses and centers of mass, resulting from diverse mass scaling techniques, significantly affect ground reaction force estimations in obese subjects, particularly in the vertical component, with a root mean square error (RMSE) of 54.7 ± 23.8 %BW; followed by 12.3 ± 8.0 %BW (medio-lateral); and 6.2 ± 3.2 %BW (antero-posterior). The vertical component of hip, knee, and ankle joint reaction forces also exhibit sensitivity to personalized mass distribution variations. Importantly, the degree of deviation in model predictions increases with body mass index. Statistical analysis using single sample Wilcoxon-Signed Rank test for non-normal data and t-test for normal data, revealed significant differences (p < 0.05) in the computed errors in kinetic parameters between the two scaling approaches. The body shape-based scaling approach significantly impacts musculoskeletal modeling in clinical applications where the upper body mass distribution is crucial, such as in spinal deformities, obesity, and low back pain. This approach accounts for the body shape inherent variability within the same BMI category and enhances the predicted joint kinetics.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"186 ","pages":"109739"},"PeriodicalIF":7.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-01-02DOI: 10.1080/10255842.2023.2298362
Hemalatha Karnan, D Uma Maheswari, D Priyadharshini, S Laushya, T K Thivyaprakas
The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.
{"title":"Cognizance detection during mental arithmetic task using statistical approach.","authors":"Hemalatha Karnan, D Uma Maheswari, D Priyadharshini, S Laushya, T K Thivyaprakas","doi":"10.1080/10255842.2023.2298362","DOIUrl":"10.1080/10255842.2023.2298362","url":null,"abstract":"<p><p>The handheld diagnosis and analysis are highly dependent on the physiological data in the clinical sector. Detection of the defect in the neuronal-assisted activity raises the challenge to the prevailing treatment that benefits from machine learning approaches. The congregated EEG data is then utilized in design of learning applications to develop a model that classifies intricate EEG patterns into active and inactive segments. During arithmetic problem-solving EEG signal acquired from frontal lobe contributes for intelligence detection. The low intricate statistical parameters help in understanding the objective. The mean of the segmented samples and standard deviation are the features extracted for model building. The feature selection is handled using correlation and Fisher score between {Fp1 and F8} and priority ranking of the regions with enhanced activity are selected for the classifier models to the training net. The R-studio platform is used to classify the data based on active and inactive liability. The radial basis function kernel for support vector machine (SVM) is deployed to substantiate the proposed methodology. The vulnerable regions F1 and F8 for arithmetic activity can be visualized from the correlation fit performed between regions. Using SVM classifier sensitivity of 92.5% is obtained for the selected features. A wide range of clinical problems can be diagnosed using this model and used for brain-computer interface.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"558-571"},"PeriodicalIF":1.7,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139075758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-10-20DOI: 10.1080/09205063.2024.2410060
Qing Yang, Xiaosheng Jin, Yuansen Zhang, Xiaoqiu Wu, Haiying Lin, Tingting Ji, Rongzhou Li
The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an in vitro study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh-LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and in vivo delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.
{"title":"<i>In vivo</i> delivery of PBAE/ZIF-8 enhances the sensitivity of colorectal cancer to doxorubicin through sh-LncRNA ASB16-AS1.","authors":"Qing Yang, Xiaosheng Jin, Yuansen Zhang, Xiaoqiu Wu, Haiying Lin, Tingting Ji, Rongzhou Li","doi":"10.1080/09205063.2024.2410060","DOIUrl":"10.1080/09205063.2024.2410060","url":null,"abstract":"<p><p>The aim of this study is to investigate the impact of sh-LncRNA ASB16-AS1 on doxorubicin (DOX) resistance in colorectal cancer (CRC). First, an <i>in vitro</i> study was conducted to investigate the effects of LncRNA ASB16-AS1, miR-185-5p, and TEAD1 on drug resistance in CRC cells. Subsequently, utilizing nanotechnology, poly(beta amino esters) (PBAE)/zeolitic imidazolate framework-8 (ZIF-8)@sh-LncRNA ASB16-AS1 nanoparticles (PZSNP) were synthesized and characterized, evaluating their cellular toxicity and hemolytic activity. Finally, a mouse subcutaneous tumor model was established by subcutaneous injection of SW480/DOX cell suspension to investigate the impact of PZSNP on the tumor. Under DOX treatment, downregulation of LncRNA ASB16-AS1, overexpression of miR-185-5p, or downregulation of TEAD1 suppressed the viability and proliferation of drug-resistant CRC cells while promoting apoptosis. Conversely, overexpression of LncRNA ASB16-AS1, inhibition of miR-185-5p, or overexpression of TEAD1 enhanced the viability and proliferation of drug-resistant CRC cells while inhibiting apoptosis. The synthesized PZSNP exhibited a spherical shape with an average particle size of 123.6 nm, possessed positive charge, displayed good stability. It effectively encapsulated shRNA and displayed low cellular toxicity and hemolytic activity. Under DOX treatment, significant tumor necrosis was observed in the PZSNP group, and tumor growth was suppressed without causing weight loss. LncRNA ASB16-AS1, miR-185-5p, and TEAD1 are involved in regulating cell viability, proliferation, and apoptosis, contributing to drug resistance in CRC cells. sh<b>-</b>LncRNA ASB16-AS1 enhances the sensitivity of CRC cells to DOX during treatment, and <i>in vivo</i> delivery of PZSNP may serve as an effective strategy to overcome chemotherapy resistance in CRC.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"495-512"},"PeriodicalIF":3.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Composite hydrogels are promising for wound healing, but combining strong antimicrobial properties with mechanical performance remains challenging due to potential disruptions in cross-linking. This study presented a one-step method to incorporate tannic acid-coated cellulose nanocrystals (TA@CNC) into polyacrylamide hydrogels. The resulting composite hydrogel exhibited superior mechanical strength, environmental stability, and antimicrobial and antioxidant activities. TA@CNC served as a dynamic reinforcement within the porous network, enhancing mechanical stability. The hydrogel also demonstrated sustained and repeatable adhesion, attributed to the moisture-resistant properties of tannic acid. This work offers valuable insights for the design of multifunctional composite hydrogels, with the developed materials showing great potential for use in medical dressings due to their stretchability, self-adhesion, and antimicrobial and antioxidant properties.
{"title":"Fabrication of multifunctional hydrogels based on tannic acid-coated nanocrystalline cellulose.","authors":"Wancheng Song, Jialin Guan, Wei Wei, Siqi Jia, Zhuojin Li, Xurui Yang, Hao Shi","doi":"10.1007/s13205-025-04232-6","DOIUrl":"https://doi.org/10.1007/s13205-025-04232-6","url":null,"abstract":"<p><p>Composite hydrogels are promising for wound healing, but combining strong antimicrobial properties with mechanical performance remains challenging due to potential disruptions in cross-linking. This study presented a one-step method to incorporate tannic acid-coated cellulose nanocrystals (TA@CNC) into polyacrylamide hydrogels. The resulting composite hydrogel exhibited superior mechanical strength, environmental stability, and antimicrobial and antioxidant activities. TA@CNC served as a dynamic reinforcement within the porous network, enhancing mechanical stability. The hydrogel also demonstrated sustained and repeatable adhesion, attributed to the moisture-resistant properties of tannic acid. This work offers valuable insights for the design of multifunctional composite hydrogels, with the developed materials showing great potential for use in medical dressings due to their stretchability, self-adhesion, and antimicrobial and antioxidant properties.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 3","pages":"66"},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although KI24RGDS peptide hydrogel that acts as a cell adhesion has been reported to repair tissue in meniscus injury, its effect on tendon injuries remains unknown. The purpose of this study was to clarify the effect of KI24RGDS for tendon repair based on histological and biomechanical evaluation. After introducing defects (length: 10 mm; width: 3 mm) at the centers of rabbits' patellar tendons, and the KI24RGDS group was implanted with KI24RGDS and observed for 8 weeks. KI24RGDS implantation resulted in limited tendon elongation and better histological scores with uniformed collagen fiber orientation and early vascularization. The failure load of the patellar tendon was higher in the KI24RGDS group than that in the defect group (p < 0.05) and no significant difference with the control group (intact patellar tendon) at 8 weeks postoperatively. In conclusion, KI24RGDS administration might have therapeutic potential for tendon injuries by accelerating collagen remodeling.
{"title":"Self-assembling peptide hydrogel scaffold accelerates healing of patellar tendon injury: A histological and biomechanical study.","authors":"Takashi Ishitani, Shuhei Otsuki, Shota Yamauchi, Yoshinori Okamoto, Hitoshi Wakama, Shunsuke Sezaki, Junya Matsuyama, Kaito Nakamura, Takeru Iwata, Chuji Hirota, Yoshiaki Hirano","doi":"10.1177/08853282241299212","DOIUrl":"10.1177/08853282241299212","url":null,"abstract":"<p><p>Although KI24RGDS peptide hydrogel that acts as a cell adhesion has been reported to repair tissue in meniscus injury, its effect on tendon injuries remains unknown. The purpose of this study was to clarify the effect of KI24RGDS for tendon repair based on histological and biomechanical evaluation. After introducing defects (length: 10 mm; width: 3 mm) at the centers of rabbits' patellar tendons, and the KI24RGDS group was implanted with KI24RGDS and observed for 8 weeks. KI24RGDS implantation resulted in limited tendon elongation and better histological scores with uniformed collagen fiber orientation and early vascularization. The failure load of the patellar tendon was higher in the KI24RGDS group than that in the defect group (<i>p</i> < 0.05) and no significant difference with the control group (intact patellar tendon) at 8 weeks postoperatively. In conclusion, KI24RGDS administration might have therapeutic potential for tendon injuries by accelerating collagen remodeling.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"880-890"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-17DOI: 10.1177/08853282241307908
Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan
In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.
{"title":"Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction.","authors":"Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan","doi":"10.1177/08853282241307908","DOIUrl":"10.1177/08853282241307908","url":null,"abstract":"<p><p>In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"952-968"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}