首页 > 最新文献

工程技术最新文献

英文 中文
IF:
Microbiome analysis reveals the intestinal microbiota characteristics and potential impact of Procambarus clarkii. 微生物组分析揭示了蝲蛄肠道微生物群的特征和潜在影响。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-10 DOI: 10.1007/s00253-023-12914-5
Ming Xu, Fulong Li, Xiaoli Zhang, Baipeng Chen, Yi Geng, Ping Ouyang, Defang Chen, Liangyu Li, Xiaoli Huang

The intestinal microbiota interacts with the host and plays an important role in the immune response, digestive physiology, and regulation of body functions. In addition, it is also well documented that the intestinal microbiota of aquatic animals are closely related to their growth rate. However, whether it resulted in different sizes of crayfish in the rice-crayfish coculture model remained vague. Here, we analyzed the intestinal microbiota characteristics of crayfish of three sizes in the same typical rice-crayfish coculture field by high-throughput sequencing technology combined with quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme activity, investigating the relationship between intestinal microbiota in crayfish and water and sediments. The results showed that the dominant intestinal microbiota of crayfish was significantly different between the large size group (BS), normal size group (NS), and small size group (SS), where Bacteroides and Candidatus_Bacilloplasma contributed to the growth of crayfish by facilitating food digestion through cellulolysis, which might be one of the potential factors affecting the difference in sizes. Follow-up experiments confirmed that the activity of lipase (LPS) and protease was higher in BS, and the relative expression of development-related genes, including alpha-amylase (α-AMY), myocyte-specific enhancer factor 2a (MEF2a), glutathione reductase (GR), chitinase (CHI), and ecdysone receptor (EcR), in BS was significantly higher than that in SS. These findings revealed the intestinal microbiota characteristics of crayfish of different sizes and their potential impact on growth, which is valuable for managing and manipulating the intestinal microbiota in crayfish to achieve high productivity in practice. KEY POINTS: • Significant differences in the dominant microflora of BS, NS, and SS in crayfish. • Cellulolysis might be a potential factor affecting different sizes in crayfish. • Adding Bacteroides and Candidatus_Bacilloplasma helped the growth of crayfish.

肠道微生物群与宿主相互作用,在免疫反应、消化生理和调节机体功能方面发挥着重要作用。此外,也有资料表明,水生动物的肠道微生物群与其生长速度密切相关。然而,在水稻-小龙虾合作养殖模式中,是否会导致小龙虾的体型大小不同,目前仍不清楚。在此,我们通过高通量测序技术,结合实时定量聚合酶链式反应(qRT-PCR)和酶活性,分析了同一典型稻田-小龙虾养殖场中三种规格小龙虾的肠道微生物群特征,研究了小龙虾肠道微生物群与水体和沉积物的关系。结果表明,小龙虾肠道优势微生物群在大规格组(BS)、正常规格组(NS)和小规格组(SS)之间存在显著差异,其中乳酸杆菌(Bacteroides)和棒状杆菌(Candidatus_Bacilloplasma)通过纤维素分解促进食物消化,对小龙虾的生长做出了贡献,这可能是影响小龙虾规格差异的潜在因素之一。后续实验证实,BS中脂肪酶(LPS)和蛋白酶的活性较高,α-淀粉酶(α-AMY)、肌细胞特异性增强因子2a(MEF2a)、谷胱甘肽还原酶(GR)、几丁质酶(CHI)和蜕皮激素受体(EcR)等发育相关基因的相对表达量明显高于SS。这些发现揭示了不同规格小龙虾的肠道微生物区系特征及其对生长的潜在影响,对管理和控制小龙虾肠道微生物区系以实现高产具有重要价值。要点:- 小龙虾 BS、NS 和 SS 的优势微生物区系存在显著差异。- 纤维素分解可能是影响小龙虾不同规格的潜在因素。- 添加 Bacteroides 和 Candidatus_Bacilloplasma 有助于小龙虾的生长。
{"title":"Microbiome analysis reveals the intestinal microbiota characteristics and potential impact of Procambarus clarkii.","authors":"Ming Xu, Fulong Li, Xiaoli Zhang, Baipeng Chen, Yi Geng, Ping Ouyang, Defang Chen, Liangyu Li, Xiaoli Huang","doi":"10.1007/s00253-023-12914-5","DOIUrl":"10.1007/s00253-023-12914-5","url":null,"abstract":"<p><p>The intestinal microbiota interacts with the host and plays an important role in the immune response, digestive physiology, and regulation of body functions. In addition, it is also well documented that the intestinal microbiota of aquatic animals are closely related to their growth rate. However, whether it resulted in different sizes of crayfish in the rice-crayfish coculture model remained vague. Here, we analyzed the intestinal microbiota characteristics of crayfish of three sizes in the same typical rice-crayfish coculture field by high-throughput sequencing technology combined with quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme activity, investigating the relationship between intestinal microbiota in crayfish and water and sediments. The results showed that the dominant intestinal microbiota of crayfish was significantly different between the large size group (BS), normal size group (NS), and small size group (SS), where Bacteroides and Candidatus_Bacilloplasma contributed to the growth of crayfish by facilitating food digestion through cellulolysis, which might be one of the potential factors affecting the difference in sizes. Follow-up experiments confirmed that the activity of lipase (LPS) and protease was higher in BS, and the relative expression of development-related genes, including alpha-amylase (α-AMY), myocyte-specific enhancer factor 2a (MEF2a), glutathione reductase (GR), chitinase (CHI), and ecdysone receptor (EcR), in BS was significantly higher than that in SS. These findings revealed the intestinal microbiota characteristics of crayfish of different sizes and their potential impact on growth, which is valuable for managing and manipulating the intestinal microbiota in crayfish to achieve high productivity in practice. KEY POINTS: • Significant differences in the dominant microflora of BS, NS, and SS in crayfish. • Cellulolysis might be a potential factor affecting different sizes in crayfish. • Adding Bacteroides and Candidatus_Bacilloplasma helped the growth of crayfish.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10781845/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139416186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Phaeodactylum tricornutum 对异源聚-3-羟基丁酸(PHB)途径的代谢反应。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-11 DOI: 10.1007/s00253-023-12823-7
Matthias Windhagauer, Martina A Doblin, Brandon Signal, Unnikrishnan Kuzhiumparambil, Michele Fabris, Raffaela M Abbriano

The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.

海洋硅藻 Phaeodactylum tricornutum 是一种新兴的代谢工程宿主,但人们对引入的途径如何整合到宿主现有的代谢框架中或影响转基因表达知之甚少。在本研究中,我们利用外显子表达技术表达了异源聚-3-羟基丁酸(PHB)途径,该途径利用了前体乙酰辅酶-A(AcCoA)。通过实验扰动培养条件,我们深入了解了转基因品系在各种环境条件下的内源代谢调控以及宿主细胞内 AcCoA 通量的变化。PHB 的生物合成导致了宿主代谢组的明显变化,进一步的分析表明内源代谢途径和转基因代谢途径之间存在着一种条件依赖关系。在氮限制条件下,中性脂质含量显著增加,代谢组和转录组数据都表明,AcCoA 被转入内源脂质生物合成途径,而不是转基因 PHB 途径。相反,以甘油形式提供的有机碳支持脂肪酸和 PHB 的生物合成,这表明细胞质和质体 AcCoA 前体之间存在交叉作用。这是首次研究表达异源多基因途径的硅藻细胞系在不同环境条件下的转录组和代谢组反应,为未来基于前体AcCoA的途径工程尝试提供了有益的启示。要点:- PHB 的表达对相邻途径的转录影响极小。- 氮限制有利于原生脂质而非转基因 PHB 的合成。- 添加甘油可同时实现脂质和 PHB 的积累。
{"title":"Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum.","authors":"Matthias Windhagauer, Martina A Doblin, Brandon Signal, Unnikrishnan Kuzhiumparambil, Michele Fabris, Raffaela M Abbriano","doi":"10.1007/s00253-023-12823-7","DOIUrl":"10.1007/s00253-023-12823-7","url":null,"abstract":"<p><p>The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius. 一种新的 peucemycin 衍生物以及 peuR 和 bldA 对 Peucetius 链霉菌中 peucemycin 生物合成的影响。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-12 DOI: 10.1007/s00253-023-12923-4
Rubin Thapa Magar, Van Thuy Thi Pham, Purna Bahadur Poudel, Adzemye Fovennso Bridget, Jae Kyung Sohng

Streptomyces peucetius ATCC 27952 is known to produce a variety of secondary metabolites, including two important antitumor anthracyclines: daunorubicin and doxorubicin. Identification of peucemycin and 25-hydroxy peucemycin (peucemycin A), as well as their biosynthetic pathway, has expanded its biosynthetic potential. In this study, we isolated a new peucemycin derivative and identified it as 19-hydroxy peucemycin (peucemycin B). Its antibacterial activity was lower than those of peucemycin and peucemycin A. On the other hand, this newly identified peucemycin derivative had higher anticancer activity than the other two compounds for MKN45, NCI-H1650, and MDA-MB-231 cancer cell lines with IC50 values of 76.97 µM, 99.68 µM, and 135.2 µM, respectively. Peucemycin biosynthetic gene cluster revealed the presence of a SARP regulator named PeuR whose role was unknown. The presence of the TTA codon in the peuR and the absence of global regulator BldA in S. peucetius reduced its ability to regulate the peucemycin biosynthetic gene cluster. Hence, different mutants harboring these genes were prepared. S. peucetius bldA25 harboring bldA produced 1.75 times and 1.77 times more peucemycin A (11.8 mg/L) and peucemycin B (21.2 mg/L), respectively, than the wild type. On the other hand, S. peucetius R25 harboring peuR produced 1.86 and 1.79 times more peucemycin A (12.5 mg/L) and peucemycin B (21.5 mg/L), respectively, than the wild type. Finally, strain S. peucetius bldAR25 carrying bldA and peuR produced roughly 3.52 and 2.63 times more peucemycin A (23.8 mg/L) and peucemycin B (31.5 mg/L), respectively, than the wild type. KEY POINTS: • This study identifies a new peucemycin derivative, 19-hydroxy peucemycin (peucemycin B). • The SARP regulator (PeuR) acts as a positive regulator of the peucemycin biosynthetic gene cluster. • The overexpression of peuR and heterologous expression of bldA increase the production of peucemycin derivatives.

据了解,链霉菌(Streptomyces peucetius)ATCC 27952 可产生多种次级代谢产物,包括两种重要的抗肿瘤蒽环类药物:daunorubicin 和 doxorubicin。豌豆霉素和 25-羟基豌豆霉素(豌豆霉素 A)及其生物合成途径的鉴定扩大了其生物合成潜力。在这项研究中,我们分离出了一种新的豌豆霉素衍生物,并将其鉴定为 19-羟基豌豆霉素(豌豆霉素 B)。另一方面,与其他两种化合物相比,这种新发现的豌豆霉素衍生物对 MKN45、NCI-H1650 和 MDA-MB-231 癌细胞株具有更高的抗癌活性,其 IC50 值分别为 76.97 µM、99.68 µM 和 135.2 µM。Peucemycin 生物合成基因簇发现了一种名为 PeuR 的 SARP 调节因子,其作用尚不清楚。在 S. peucetius 中,PeuR 的 TTA 密码子和全局调控因子 BldA 的缺失降低了其调控 peucemycin 生物合成基因簇的能力。因此,我们制备了携带这些基因的不同突变体。携带 BldA 的 S. peucetius bldA25 产生的 peucemycin A(11.8 毫克/升)和 peucemycin B(21.2 毫克/升)分别是野生型的 1.75 倍和 1.77 倍。另一方面,携带 peuR 的 S. peucetius R25 产生的 peucemycin A(12.5 毫克/升)和 peucemycin B(21.5 毫克/升)分别是野生型的 1.86 倍和 1.79 倍。最后,携带 bldA 和 peuR 的 S. peucetius bldAR25 菌株产生的 peucemycin A(23.8 毫克/升)和 peucemycin B(31.5 毫克/升)分别是野生型的 3.52 倍和 2.63 倍。要点:- 这项研究发现了一种新的豌豆霉素衍生物--19-羟基豌豆霉素(豌豆霉素 B)。- SARP 调节因子(PeuR)是peucemycin 生物合成基因簇的正向调节因子。- 过量表达 peuR 和异源表达 bldA 会增加peucemycin 衍生物的产量。
{"title":"A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius.","authors":"Rubin Thapa Magar, Van Thuy Thi Pham, Purna Bahadur Poudel, Adzemye Fovennso Bridget, Jae Kyung Sohng","doi":"10.1007/s00253-023-12923-4","DOIUrl":"10.1007/s00253-023-12923-4","url":null,"abstract":"<p><p>Streptomyces peucetius ATCC 27952 is known to produce a variety of secondary metabolites, including two important antitumor anthracyclines: daunorubicin and doxorubicin. Identification of peucemycin and 25-hydroxy peucemycin (peucemycin A), as well as their biosynthetic pathway, has expanded its biosynthetic potential. In this study, we isolated a new peucemycin derivative and identified it as 19-hydroxy peucemycin (peucemycin B). Its antibacterial activity was lower than those of peucemycin and peucemycin A. On the other hand, this newly identified peucemycin derivative had higher anticancer activity than the other two compounds for MKN45, NCI-H1650, and MDA-MB-231 cancer cell lines with IC<sub>50</sub> values of 76.97 µM, 99.68 µM, and 135.2 µM, respectively. Peucemycin biosynthetic gene cluster revealed the presence of a SARP regulator named PeuR whose role was unknown. The presence of the TTA codon in the peuR and the absence of global regulator BldA in S. peucetius reduced its ability to regulate the peucemycin biosynthetic gene cluster. Hence, different mutants harboring these genes were prepared. S. peucetius bldA25 harboring bldA produced 1.75 times and 1.77 times more peucemycin A (11.8 mg/L) and peucemycin B (21.2 mg/L), respectively, than the wild type. On the other hand, S. peucetius R25 harboring peuR produced 1.86 and 1.79 times more peucemycin A (12.5 mg/L) and peucemycin B (21.5 mg/L), respectively, than the wild type. Finally, strain S. peucetius bldAR25 carrying bldA and peuR produced roughly 3.52 and 2.63 times more peucemycin A (23.8 mg/L) and peucemycin B (31.5 mg/L), respectively, than the wild type. KEY POINTS: • This study identifies a new peucemycin derivative, 19-hydroxy peucemycin (peucemycin B). • The SARP regulator (PeuR) acts as a positive regulator of the peucemycin biosynthetic gene cluster. • The overexpression of peuR and heterologous expression of bldA increase the production of peucemycin derivatives.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testacosides A-D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis. 睾丸苷 A-D,从巴西泰达尼亚中分离出来的睾丸微杆菌产生的甘油三酯。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-12 DOI: 10.1007/s00253-023-12870-0
Jairo I Quintana-Bulla, Luciane A C Tonon, Lamonielli F Michaliski, Eduardo Hajdu, Antonio G Ferreira, Roberto G S Berlinck

Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.

事实证明,与海洋海绵共生的海洋细菌是具有生物活性的次生代谢物的可靠来源。我们在此报告从巴西泰达尼亚(Tedania brasiliensis)海绵中分离出一株睾丸微杆菌(M. testaceum)。通过对从睾丸微杆菌培养基中提取的具有生物活性的预分馏提取物进行分子网络分析,发现了睾丸苷 A-D。通过光谱数据和化学衍生分析,鉴定出睾酮苷 A-D 为甘油脂类,其中睾酮苷 A (1)含有与 12-甲基十四烷酸相连的 1-[α-吡喃葡萄糖基-(1 → 3)-(α-吡喃甘露糖基)]-甘油分子、睾酮苷 B(2)为 14-甲基十五烷酸,睾酮苷 C(3)和 D(4)为 14-甲基十六烷酸。单糖残基的绝对构型是通过对各自的非对映噻唑烷衍生物进行 1H-NMR 分析确定的。这是首次报道从 M. testaceum 培养物中分离出的天然产物。要点:- 首次报道睾丸微杆菌产生的代谢产物。- 1-[α-吡喃葡萄糖基-(1 → 3)-(α-吡喃甘露糖基)]-甘油脂质的分离和鉴定。- 从巴西海绵(Tedania brasiliensis)中分离出的睾丸微细菌菌株。
{"title":"Testacosides A-D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis.","authors":"Jairo I Quintana-Bulla, Luciane A C Tonon, Lamonielli F Michaliski, Eduardo Hajdu, Antonio G Ferreira, Roberto G S Berlinck","doi":"10.1007/s00253-023-12870-0","DOIUrl":"10.1007/s00253-023-12870-0","url":null,"abstract":"<p><p>Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by <sup>1</sup>H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of a novel aspartic protease from Trichoderma asperellum for the preparation of duck blood peptides. 用于制备鸭血肽的新型天冬氨酸蛋白酶的特征。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-13 DOI: 10.1007/s00253-023-12848-y
Yibin Xue, Qiaojuan Yan, Xue Li, Zhengqiang Jiang

A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC50 values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.

在 Komagataella phaffii(Pichia pastoris)中成功表达了一种新型天冬氨酸蛋白酶基因(TaproA1)。TaproA1 与 Coccidioides posadasii C735 的天冬氨酸蛋白酶 PEP3 有 52.8% 的氨基酸序列相同性。TaproA1 在 5 L 发酵罐中高效生产,蛋白酶活性为 4092 U/mL。其最佳反应条件为 pH 3.0 和 50 °C,在 pH 3.0-6.0 和高达 45 °C的温度条件下稳定。该蛋白酶具有广泛的底物特异性,对肌红蛋白和血红蛋白具有较高的水解活性。此外,TaproA1 还水解了鸭血蛋白(血红蛋白和血浆蛋白),制备出了具有高 ACE 抑制活性的生物活性肽。鸭血蛋白水解物血红蛋白和血浆蛋白的 IC50 值分别为 0.105 毫克/毫升和 0.091 毫克/毫升。因此,本文介绍的 TaproA1 的高产率和出色的生化特性使其成为制备鸭血肽的潜在候选物质。要点- 在 Komagataella phaffii 中表达了一种天冬氨酸蛋白酶(TaproA1)。- TaproA1 具有广泛的底物特异性,对肌红蛋白和血红蛋白的活性最高。- TaproA1 具有从鸭血蛋白制备生物活性肽的巨大潜力。
{"title":"Characterization of a novel aspartic protease from Trichoderma asperellum for the preparation of duck blood peptides.","authors":"Yibin Xue, Qiaojuan Yan, Xue Li, Zhengqiang Jiang","doi":"10.1007/s00253-023-12848-y","DOIUrl":"10.1007/s00253-023-12848-y","url":null,"abstract":"<p><p>A novel aspartic protease gene (TaproA1) from Trichoderma asperellum was successfully expressed in Komagataella phaffii (Pichia pastoris). TaproA1 showed 52.8% amino acid sequence identity with the aspartic protease PEP3 from Coccidioides posadasii C735. TaproA1 was efficiently produced in a 5 L fermenter with a protease activity of 4092 U/mL. It exhibited optimal reaction conditions at pH 3.0 and 50 °C and was stable within pH 3.0-6.0 and at temperatures up to 45 °C. The protease exhibited broad substrate specificity with high hydrolysis activity towards myoglobin and hemoglobin. Furthermore, duck blood proteins (hemoglobin and plasma protein) were hydrolyzed by TaproA1 to prepare bioactive peptides with high ACE inhibitory activity. The IC<sub>50</sub> values of hemoglobin and plasma protein hydrolysates from duck blood proteins were 0.105 mg/mL and 0.091 mg/mL, respectively. Thus, the high yield and excellent biochemical characterization of TaproA1 presented here make it a potential candidate for the preparation of duck blood peptides. KEY POINTS: • An aspartic protease (TaproA1) from Trichoderma asperellum was expressed in Komagataella phaffii. • TaproA1 exhibited broad substrate specificity and the highest activity towards myoglobin and hemoglobin. • TaproA1 has great potential for the preparation of bioactive peptides from duck blood proteins.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model. 抗生素治疗后牦牛地衣芽孢杆菌对小鼠模型的影响。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-16 DOI: 10.1007/s00253-023-12866-w
Zhibo Zeng, Saisai Gong, Chuxian Quan, Shimeng Zhou, Muhammad Fakhar-E-Alam Kulyar, Mudassar Iqbal, Yan Li, Xiang Li, Jiakui Li

Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.

肠道微生物(GM)是宿主微生物组和健康系统不可或缺的组成部分。滥用抗生素会破坏微生物组的平衡,影响环境病原体和宿主相关细菌。然而,有关地衣芽孢杆菌减轻抗生素不良影响的研究相对较少。为了测试地衣芽孢杆菌作为益生菌补充剂对抗生素影响的作用,研究人员应用头孢氨苄,通过病理学、实时 PCR(RT-PCR)和高通量测序(HTS)研究了头孢氨苄引起的空肠群落紊乱和肠屏障损伤的恢复情况。结果表明,A组(抗生素治疗)体重明显降低,空肠绒毛长度和绒毛与隐窝比值(V/C)明显降低,空肠黏膜结构也受到破坏;B组(抗生素治疗)体重明显降低,空肠绒毛长度和绒毛与隐窝比值(V/C)明显降低,空肠黏膜结构也受到破坏。同时,与其他组相比,抗生素治疗抑制了紧密连接蛋白 ZO-1、claudin、occludin 和 Ki67 的 mRNA 表达,并升高了 MUC2 的表达(P < 0.05 和 P < 0.01)。然而,T 组(抗生素治疗后补充地衣芽孢杆菌)恢复了上述基因的表达,与对照组相比无统计学差异(P > 0.05)。此外,抗生素处理增加了空肠群落中 4 个细菌门、16 个细菌属的相对丰度,包括空肠中占优势的固缩菌、变形菌和蓝细菌。抗生素治疗后补充地衣芽孢杆菌会降低类杆菌和变形菌的相对丰度,增加固缩菌、Epsilonbacteraeota、乳酸杆菌和Candidatus Stoquefichus的相对丰度。这项研究通过考虑与环境抗生素污染水平相关的暴露浓度和持续时间,模拟了真实世界的暴露情景。我们描述了使用地衣芽孢杆菌进行抗生素治疗后可恢复肠道微生物群紊乱并修复肠道屏障。要点:地衣芽孢杆菌抗生素后治疗- 地衣芽孢杆菌抗生素后可恢复肠道平衡、修复肠道屏障并有助于健康 - 抗生素会损害肠道屏障、改变结构并增加疾病风险 - 长期服用抗生素会影响肠道并增加疾病易感性。
{"title":"Impact of Bacillus licheniformis from yaks following antibiotic therapy in mouse model.","authors":"Zhibo Zeng, Saisai Gong, Chuxian Quan, Shimeng Zhou, Muhammad Fakhar-E-Alam Kulyar, Mudassar Iqbal, Yan Li, Xiang Li, Jiakui Li","doi":"10.1007/s00253-023-12866-w","DOIUrl":"10.1007/s00253-023-12866-w","url":null,"abstract":"<p><p>Gut microorganism (GM) is an integral component of the host microbiome and health system. Abuse of antibiotics disrupts the equilibrium of the microbiome, affecting environmental pathogens and host-associated bacteria alike. However, relatively little research on Bacillus licheniformis alleviates the adverse effects of antibiotics. To test the effect of B. licheniformis as a probiotic supplement against the effects of antibiotics, cefalexin was applied, and the recovery from cefalexin-induced jejunal community disorder and intestinal barrier damage was investigated by pathology, real-time PCR (RT-PCR), and high-throughput sequencing (HTS). The result showed that A group (antibiotic treatment) significantly reduced body weight and decreased the length of jejunal intestinal villi and the villi to crypt (V/C) value, which also caused structural damage to the jejunal mucosa. Meanwhile, antibiotic treatment suppressed the mRNA expression of tight junction proteins ZO-1, claudin, occludin, and Ki67 and elevated MUC2 expression more than the other Groups (P < 0.05 and P < 0.01). However, T group (B. licheniformis supplements after antibiotic treatment) restored the expression of the above genes, and there was no statistically significant difference compared to the control group (P > 0.05). Moreover, the antibiotic treatment increased the relative abundance of 4 bacterial phyla affiliated with 16 bacterial genera in the jejunum community, including the dominant Firmicutes, Proteobacteria, and Cyanobacteria in the jejunum. B. licheniformis supplements after antibiotic treatment reduced the relative abundance of Bacteroidetes and Proteobacteria and increased the relative abundance of Firmicutes, Epsilonbacteraeota, Lactobacillus, and Candidatus Stoquefichus. This study uses mimic real-world exposure scenarios by considering the concentration and duration of exposure relevant to environmental antibiotic contamination levels. We described the post-antibiotic treatment with B. licheniformis could restore intestinal microbiome disorders and repair the intestinal barrier. KEY POINTS: • B. licheniformis post-antibiotics restore gut balance, repair barrier, and aid health • Antibiotics harm the gut barrier, alter structure, and raise disease risk • Long-term antibiotics affect the gut and increase disease susceptibility.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potency of mitochondria enlargement for mitochondria-mediated terpenoid production in yeast. 线粒体增大对酵母中线粒体介导的萜类化合物生产的效力。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2024-01-13 DOI: 10.1007/s00253-023-12922-5
So Yanagibashi, Takahiro Bamba, Takayoshi Kirisako, Akihiko Kondo, Tomohisa Hasunuma

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or β-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or β-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.

萜类化合物广泛应用于食品、饮料、化妆品和制药行业。人们对微生物生产萜类化合物进行了广泛研究。在酵母中,除了增强自身的甲羟戊酸(MVA)途径外,在细胞器中引入甲羟戊酸(MVA)途径也是一项挑战。在线粒体中引入甲羟戊酸途径被认为是生产萜类化合物的一种可行方法,因为乙酰-CoA(甲羟戊酸途径的起始分子)在线粒体中含量丰富。然而,线粒体只占整个细胞的一小部分。因此,我们假设增加每个细胞的线粒体总量会增加萜类化合物的产量。首先,我们发现在线粒体中表达 MVA 途径的菌株,其二磷酸异戊烯酯(IPP)和二磷酸二甲基烯丙基酯(DMAPP)(MVA 途径的最终分子)的含量是野生型酵母菌株的 15 倍。其次,通过测量影响线粒体形态的各种缺失突变体的线粒体体积,我们发现不同的缺失突变体诱导了不同的线粒体体积;例如,Δmdm32增加了线粒体体积,而Δfzo1则减少了线粒体体积。最后,利用线粒体中表达 MVA 途径的大线粒体或小线粒体突变体,研究了线粒体体积对 IPP/DMAPP 和萜类化合物(角鲨烯或 β-胡萝卜素)数量的影响。当线粒体体积增大时,IPP/DMAPP 和萜类化合物(角鲨烯或 β-胡萝卜素)的数量增加。将 MVA 途径引入线粒体以在酵母中生产萜类化合物可能会因线粒体体积增大而更具吸引力。要点- 线粒体中表达 MVA 途径的菌株中 IPP/DMAPP 含量增加 - IPP/DMAPP 和萜类化合物含量与线粒体体积呈正相关 - 扩大线粒体可提高线粒体介导的萜类化合物产量。
{"title":"The potency of mitochondria enlargement for mitochondria-mediated terpenoid production in yeast.","authors":"So Yanagibashi, Takahiro Bamba, Takayoshi Kirisako, Akihiko Kondo, Tomohisa Hasunuma","doi":"10.1007/s00253-023-12922-5","DOIUrl":"10.1007/s00253-023-12922-5","url":null,"abstract":"<p><p>Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or β-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or β-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139477629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial potential of Euphorbia canariensis against Pseudomonas aeruginosa bacteria causing respiratory tract infections. 加那利大戟对引起呼吸道感染的铜绿假单胞菌的抗菌潜力。
IF 5.8 3区 生物学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2024-05-02 DOI: 10.1080/21691401.2024.2345891
Badriyah Alotaibi, Engy Elekhnawy, Thanaa A El-Masry, Asmaa Saleh, Manal E Alosaimi, Khalid Nijr Alotaibi, Walaa A Negm

The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of Euphorbia canariensis ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against Pseudomonas aeruginosa clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and pslD) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied in vivo using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.

由于细菌抗药性的广泛传播,人们开始高度重视寻找传统抗生素的替代品。植物富含各种植物化学物质,可用作抗菌疗法。在此,我们对大戟科植物乙醇提取物(EMEE)的植物化学成分进行了分析,然后阐明了ECEE对铜绿假单胞菌临床分离株的抗菌潜力。ECEE 的最小抑菌浓度为 128 至 512 µg/mL。利用水晶紫测定法和 qRT-PCR 研究了 ECEE 对基因表达水平的影响,从而阐明了 ECEE 对受试分离菌生物膜形成能力的影响。结果表明,ECEE 具有抗生物膜的潜能,可导致 39.13% 的受试分离物的生物膜基因(algD、pelF 和 pslD)表达下调。研究人员利用小鼠肺部感染模型对环己基氨基甲酸乙酯的抗菌潜力进行了体内研究。组织学和免疫组化研究表明,经 ECEE 处理的小鼠肺部感染情况明显好转。此外,酶联免疫吸附试验(ELISA)显示,氧化应激标记物(一氧化氮和丙二醛)明显减少。促炎标志物(白细胞介素-6)的基因表达下调,而抗炎生物标志物(白细胞介素-10)则上调。因此,应尽快开展临床试验,探索环己基氨基甲酸乙酯的潜在抗菌活性,这将有助于我们与具有抗药性的病原菌作斗争。
{"title":"Antibacterial potential of <i>Euphorbia canariensis</i> against <i>Pseudomonas aeruginosa</i> bacteria causing respiratory tract infections.","authors":"Badriyah Alotaibi, Engy Elekhnawy, Thanaa A El-Masry, Asmaa Saleh, Manal E Alosaimi, Khalid Nijr Alotaibi, Walaa A Negm","doi":"10.1080/21691401.2024.2345891","DOIUrl":"10.1080/21691401.2024.2345891","url":null,"abstract":"<p><p>The widespread dissemination of bacterial resistance has led to great attention being paid to finding substitutes for traditionally used antibiotics. Plants are rich in various phytochemicals that could be used as antibacterial therapies. Here, we elucidate the phytochemical profile of <i>Euphorbia canariensis</i> ethanol extract (EMEE) and then elucidate the antibacterial potential of ECEE against <i>Pseudomonas aeruginosa</i> clinical isolates. ECEE showed minimum inhibitory concentrations ranging from 128 to 512 µg/mL. The impact of ECEE on the biofilm-forming ability of the tested isolates was elucidated using crystal violet assay and qRT-PCR to study its effect on the gene expression level. ECEE exhibited antibiofilm potential, which resulted in a downregulation of the expression of the biofilm genes (algD, pelF, and <i>psl</i>D) in 39.13% of the tested isolates. The antibacterial potential of ECEE was studied <i>in vivo</i> using a lung infection model in mice. A remarkable improvement was observed in the ECEE-treated group, as revealed by the histological and immunohistochemical studies. Also, ELISA showed a noticeable decrease in the oxidative stress markers (nitric oxide and malondialdehyde). The gene expression of the proinflammatory marker (interleukin-6) was downregulated, while the anti-inflammatory biomarker was upregulated (interleukin-10). Thus, clinical trials should be performed soon to explore the potential antibacterial activity of ECEE, which could help in our battle against resistant pathogenic bacteria.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. 海藻酸钠/芦荟/丝裂霉素复合支架的止血效力--制备、表征和评估。
IF 5.8 3区 生物学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-12-01 Epub Date: 2023-12-19 DOI: 10.1080/21691401.2023.2293784
Jayavardhini Bhoopathy, Weslen Vedakumari Sathyaraj, Beryl Vedha Yesudhason, Selvarajan Rajendran, Sankari Dharmalingam, Jayashri Seetharaman, Ranjitha Muthu, Ramachandran Murugesan, Subramanian Raghunandhakumar, Suresh Kumar Anandasadagopan

Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.

制造具有优异抗菌性、生物相容性和生物可降解性的止血材料仍然是医学领域的一大挑战。止血剂在紧急情况下保护病人和军人方面发挥着至关重要的作用。天然聚合物具有促进止血和伤口愈合的功效,是制造止血化合物的理想材料。在本研究中,我们采用一种简单、经济有效的浇铸方法制作了海藻酸钠/芦荟/丝裂霉素(SA/AV/S)支架。扫描电子显微镜、紫外-可见光谱和傅立叶变换红外光谱等仪器对制备的 SA/AV/S 支架的理化性质进行了表征。SA/AV/S 支架显示出良好的机械强度、溶胀性能和抗菌活性。使用红细胞进行的体外实验证明,SA/AV/S 支架具有血液相容性和生物相容性。利用人体血液进行的体外凝血试验证明了 SA/AV/S 支架的止血和吸血特性。划痕伤口试验研究了所制备支架的伤口愈合功效。使用受精胚胎进行的小鸡胚胎绒毛膜检测证明了 SA/AV/S 支架的血管生成特性。因此,SA/AV/S 支架因其出色的止血、抗菌、血液相容性、生物相容性和血管生成特性,可作为一种潜在的止血保健产品。
{"title":"Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation.","authors":"Jayavardhini Bhoopathy, Weslen Vedakumari Sathyaraj, Beryl Vedha Yesudhason, Selvarajan Rajendran, Sankari Dharmalingam, Jayashri Seetharaman, Ranjitha Muthu, Ramachandran Murugesan, Subramanian Raghunandhakumar, Suresh Kumar Anandasadagopan","doi":"10.1080/21691401.2023.2293784","DOIUrl":"10.1080/21691401.2023.2293784","url":null,"abstract":"<p><p>Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138796295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel reaction systems for catalytic synthesis of structured phospholipids. 催化合成结构磷脂的新型反应系统。
IF 5 3区 生物学 Q1 Immunology and Microbiology Pub Date : 2024-12-01 Epub Date: 2023-12-28 DOI: 10.1007/s00253-023-12913-6
Chenxi He, Haiyang Zhang, Xi Chen, Rujing Diao, Jianan Sun, Xiangzhao Mao

Phospholipids are distinctive, adaptable molecules that are crucial to numerous biological systems. Additionally, their various architectures and amphiphilic characteristics support their unrivaled crucial functions in scientific and industrial applications. Due to their enormous potential for use in the fields of medicine, food, cosmetics, and health, structured phospholipids, which are modified phospholipids, have garnered increased attention. Traditional extraction methods, however, are pricy, resource-intensive, and low-yielding. The process of enzyme-catalyzed conversion is effective for producing several types of structured phospholipase. However, most frequently employed catalytic procedures involve biphasic systems with organic solvents, which have a relatively large mass transfer resistance and are susceptible to solvent residues and environmental effects due to the hydrophobic nature of phospholipids. Therefore, the adoption of innovative, successful, and environmentally friendly enzyme-catalyzed conversion systems provides a new development route in the field of structured phospholipids processing. Several innovative catalytic reaction systems are discussed in this mini-review, including aqueous-solid system, mixed micelle system, water-in-oil microemulsion system, Pickering emulsion system, novel solvent system, three-liquid-phase system, and supercritical carbon dioxide solvent system. However, there is still a glaring need for a thorough examination of these systems for the enzymatic synthesis of structural phospholipids. In terms of the materials utilized, applicability, benefits and drawbacks, and comparative effectiveness of each system, this research establishes further conditions for the system's selection. To create more effective biocatalytic processes, it is still important to build green biocatalytic processes with improved performance. KEY POINTS: • The latest catalytic systems of phospholipase D are thoroughly summarized. • The various systems are contrasted, and their traits are enumerated. • Different catalytic systems' areas of applicability and limitations are discussed.

磷脂是一种独特的、适应性强的分子,对许多生物系统至关重要。此外,磷脂的各种结构和两亲特性也支持其在科学和工业应用中发挥无与伦比的重要功能。由于其在医药、食品、化妆品和健康领域的巨大应用潜力,结构磷脂(即改性磷脂)受到越来越多的关注。然而,传统的提取方法价格昂贵、资源密集且产量低。酶催化转化过程可有效生产多种类型的结构磷脂酶。然而,最常用的催化程序涉及使用有机溶剂的双相系统,这种系统的传质阻力相对较大,而且由于磷脂的疏水性,容易产生溶剂残留和环境影响。因此,采用创新、成功、环保的酶催化转化体系为结构磷脂加工领域提供了一条新的发展道路。本微综述讨论了几种创新的催化反应体系,包括水固体系、混合胶束体系、油包水微乳液体系、皮克林乳液体系、新型溶剂体系、三液相体系和超临界二氧化碳溶剂体系。然而,在酶法合成结构磷脂方面,仍亟需对这些体系进行深入研究。本研究从各系统所使用的材料、适用性、利弊和有效性比较等方面,为系统的选择提供了进一步的条件。为了创造更有效的生物催化过程,建立性能更高的绿色生物催化过程仍然非常重要。要点:- 全面总结了磷脂酶 D 的最新催化体系。- 对各种催化体系进行了对比,并列举了它们的特点。- 讨论了不同催化体系的适用范围和局限性。
{"title":"Novel reaction systems for catalytic synthesis of structured phospholipids.","authors":"Chenxi He, Haiyang Zhang, Xi Chen, Rujing Diao, Jianan Sun, Xiangzhao Mao","doi":"10.1007/s00253-023-12913-6","DOIUrl":"10.1007/s00253-023-12913-6","url":null,"abstract":"<p><p>Phospholipids are distinctive, adaptable molecules that are crucial to numerous biological systems. Additionally, their various architectures and amphiphilic characteristics support their unrivaled crucial functions in scientific and industrial applications. Due to their enormous potential for use in the fields of medicine, food, cosmetics, and health, structured phospholipids, which are modified phospholipids, have garnered increased attention. Traditional extraction methods, however, are pricy, resource-intensive, and low-yielding. The process of enzyme-catalyzed conversion is effective for producing several types of structured phospholipase. However, most frequently employed catalytic procedures involve biphasic systems with organic solvents, which have a relatively large mass transfer resistance and are susceptible to solvent residues and environmental effects due to the hydrophobic nature of phospholipids. Therefore, the adoption of innovative, successful, and environmentally friendly enzyme-catalyzed conversion systems provides a new development route in the field of structured phospholipids processing. Several innovative catalytic reaction systems are discussed in this mini-review, including aqueous-solid system, mixed micelle system, water-in-oil microemulsion system, Pickering emulsion system, novel solvent system, three-liquid-phase system, and supercritical carbon dioxide solvent system. However, there is still a glaring need for a thorough examination of these systems for the enzymatic synthesis of structural phospholipids. In terms of the materials utilized, applicability, benefits and drawbacks, and comparative effectiveness of each system, this research establishes further conditions for the system's selection. To create more effective biocatalytic processes, it is still important to build green biocatalytic processes with improved performance. KEY POINTS: • The latest catalytic systems of phospholipase D are thoroughly summarized. • The various systems are contrasted, and their traits are enumerated. • Different catalytic systems' areas of applicability and limitations are discussed.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS BIOMATER-SCI ENG ENERG FUEL IND ENG CHEM RES Biomater. Sci. Lab Chip Mol. Syst. Des. Eng. Adv. Healthcare Mater. AlChE J. Biotechnol. J. Comput.-Aided Civ. Infrastruct. Eng. J. Tissue Eng. Regener. Med. Microb. Biotechnol. Plant Biotechnol. J. Sol. RRL Acta Biomater. Appl. Energy BIOMASS BIOENERG Biomaterials Bioresour. Technol. Cem. Concr. Res. Chem. Eng. J. Chem. Eng. Sci. Combust. Flame Compos. Struct. COMPUT CHEM ENG Comput. Fluids Constr. Build. Mater. Curr. Opin. Chem. Eng. Dent. Mater. Desalination Electrochem. Commun. Fuel Fuel Process. Technol. Int. Commun. Heat Mass Transfer Int. J. Greenhouse Gas Control Int. J. Heat Fluid Flow Int. J. Heat Mass Transfer Int. J. Hydrogen Energy Int. J. Multiphase Flow Int. J. Therm. Sci. J. CO2 Util. J. Ind. Eng. Chem. J. Membr. Sci. J. Nat. Gas Sci. Eng. J. Nucl. Mater. J. Power Sources J. Mech. Behav. Biomed. Mater. J. Taiwan Inst. Chem. Eng. MAT SCI ENG A-STRUCT Mater. Sci. Eng. R Rep. Org. Electron. Powder Technol. Proc. Combust. Inst. Prog. Energy Combust. Sci. Prog. Surf. Sci. Remote Sens. Environ. Renewable Energy Sep. Purif. Technol. Sol. Energy IEEE Electr. Insul. Mag. IEEE J. Photovoltaics IEEE Trans. Device Mater. Reliab. IEEE Trans. Nanotechnol. IEEE Trans. Semicond. Manuf. IEEE Trans. Sustainable Energy Accredit. Qual. Assur. Acta Mech. Adsorption Appl. Biochem. Biotechnol. Appl. Nanosci. ARCH APPL MECH At. Energy Biodegradation Bioenergy Res. Biomass Convers. Biorefin. Biomech. Model. Mechanobiol. Biomed. Microdevices Biotechnol. Biofuels BMC Chem. Eng. Bull. Eng. Geol. Environ. Comput. Part. Mech. Continuum Mech. Thermodyn. Energy Effic. ENERGY SUSTAIN SOC Exp. Mech. Exp. Tech. Exp. Fluids Fire Technol. FLOW TURBUL COMBUST Fluid Dyn. FRONT ENERGY Front. Chem. Sci. Eng. Gold Bull. Granular Matter Instrum. Exp. Tech. Int. J. Fract. Int. J. Steel Struct. Int. J. Thermophys. J. Appl. Mech. Tech. Phys. J. Comput. Electron.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1