Pub Date : 2024-12-31Epub Date: 2024-11-24DOI: 10.1080/21645698.2024.2429200
Antonio Carlos Mota Porto, José Mateus Wisniewski Gonsalves, Paula Aparecida Vieira, Matheus Perek, Diego da Costa Lima, Marcio Nagayschi, Thais Regina Drezza, Ana Cristina Pinheiro, Eduardo Jose de Mello, Dror Avisar, Rodrigo Neves Graca
Eucalyptus stands out as one of the most productive tree species for large-scale cultivation. However, like all cultivated crops, it requires specialized management practices, including the control of weeds, pathogens, and pests. Glyphosate is the most widely applied herbicide used in the essential weeding effort, and it ensures the sustainable management of eucalyptus cultivation in Brazil. Given the sensitivity of eucalyptus to glyphosate, existing weed control methods in young eucalyptus farms predominantly rely on protected mechanical or/and knapsack spraying. Both methods contribute to herbicide drift, which compromises tree yield and increases chemical waste due to uneven spraying. This study provides a detailed observation of the physiological parameters and long-term field performance of glyphosate-tolerant (HT), genetically modified (GM) eucalyptus developed by FuturaGene/Suzano S.A. and approved in Brazil for operational deployment. The HT GM eucalyptus events were meticulously evaluated to ensure high levels of glyphosate tolerance. This involved the direct application of herbicide on seedlings in greenhouse studies and on young trees in field conditions. The herbicide-treated GM eucalyptus in all trials demonstrated consistent growth and maintained physiological parameters comparable to their respective non-sprayed wild-type (WT) counterparts. The HT GM eucalyptus represents a significant advancement by enabling the direct application of glyphosate over the top of the trees to control the weeds within the planting row. This innovative approach minimizes the need for frequent mechanical and manual interventions, thereby lowering worker herbicide exposure, reducing the environmental impact of mechanical operations, and enhancing the overall efficiency and sustainability of HT GM eucalyptus stands.
{"title":"Characterization of glyphosate-tolerant genetically modified eucalyptus.","authors":"Antonio Carlos Mota Porto, José Mateus Wisniewski Gonsalves, Paula Aparecida Vieira, Matheus Perek, Diego da Costa Lima, Marcio Nagayschi, Thais Regina Drezza, Ana Cristina Pinheiro, Eduardo Jose de Mello, Dror Avisar, Rodrigo Neves Graca","doi":"10.1080/21645698.2024.2429200","DOIUrl":"10.1080/21645698.2024.2429200","url":null,"abstract":"<p><p>Eucalyptus stands out as one of the most productive tree species for large-scale cultivation. However, like all cultivated crops, it requires specialized management practices, including the control of weeds, pathogens, and pests. Glyphosate is the most widely applied herbicide used in the essential weeding effort, and it ensures the sustainable management of eucalyptus cultivation in Brazil. Given the sensitivity of eucalyptus to glyphosate, existing weed control methods in young eucalyptus farms predominantly rely on protected mechanical or/and knapsack spraying. Both methods contribute to herbicide drift, which compromises tree yield and increases chemical waste due to uneven spraying. This study provides a detailed observation of the physiological parameters and long-term field performance of glyphosate-tolerant (HT), genetically modified (GM) eucalyptus developed by FuturaGene/Suzano S.A. and approved in Brazil for operational deployment. The HT GM eucalyptus events were meticulously evaluated to ensure high levels of glyphosate tolerance. This involved the direct application of herbicide on seedlings in greenhouse studies and on young trees in field conditions. The herbicide-treated GM eucalyptus in all trials demonstrated consistent growth and maintained physiological parameters comparable to their respective non-sprayed wild-type (WT) counterparts. The HT GM eucalyptus represents a significant advancement by enabling the direct application of glyphosate over the top of the trees to control the weeds within the planting row. This innovative approach minimizes the need for frequent mechanical and manual interventions, thereby lowering worker herbicide exposure, reducing the environmental impact of mechanical operations, and enhancing the overall efficiency and sustainability of HT GM eucalyptus stands.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"361-373"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-08-04DOI: 10.1080/15476278.2024.2386730
Qian Gao, Jin-Zhen Cai, He Dong
Post-reperfusion syndrome (PRS) is a severe and highly lethal syndrome that occurs after declamping the portal vein forceps during liver transplantation. It is marked by severe hemodynamic disturbances manifested by decreased mean arterial pressure, increased heart rate and elevated pulmonary artery pressure. The complex pathogenesis of PRS remains understudied. It is generally believed to be related to the large amount of acidic, cold blood that enters the circulation after release of the portal clamp. This blood is rich in oxygen-free radicals and metabolic toxins, which not only aggravate the ischemia-reperfusion injury of the liver but also further attack the systemic organs indiscriminately. Considering the range of possible adverse prognoses including acute kidney injury, delirium and graft nonfunction, it is imperative that clinicians increase their awareness and prevention of PRS. The aim of this article is to review the current risk factors, pathophysiological mechanisms and prevention strategies for PRS.
{"title":"A Review of the Risk Factors and Approaches to Prevention of Post-Reperfusion Syndrome During Liver Transplantation.","authors":"Qian Gao, Jin-Zhen Cai, He Dong","doi":"10.1080/15476278.2024.2386730","DOIUrl":"10.1080/15476278.2024.2386730","url":null,"abstract":"<p><p>Post-reperfusion syndrome (PRS) is a severe and highly lethal syndrome that occurs after declamping the portal vein forceps during liver transplantation. It is marked by severe hemodynamic disturbances manifested by decreased mean arterial pressure, increased heart rate and elevated pulmonary artery pressure. The complex pathogenesis of PRS remains understudied. It is generally believed to be related to the large amount of acidic, cold blood that enters the circulation after release of the portal clamp. This blood is rich in oxygen-free radicals and metabolic toxins, which not only aggravate the ischemia-reperfusion injury of the liver but also further attack the systemic organs indiscriminately. Considering the range of possible adverse prognoses including acute kidney injury, delirium and graft nonfunction, it is imperative that clinicians increase their awareness and prevention of PRS. The aim of this article is to review the current risk factors, pathophysiological mechanisms and prevention strategies for PRS.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"20 1","pages":"2386730"},"PeriodicalIF":1.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-11-18DOI: 10.1080/21645698.2024.2418161
Dilshad Zahan Ethen, Maimuna Begum, Berre Deltomme, Md Rasheduzzaman, Josefina F Ballesteros, Riza Abilgos-Ramos, Mohammad Jahangir Alam, Alice Onek Atimango, Hans De Steur
Golden Rice (GR), genetically modified (GM) rice enriched with provitamin A, holds promise to address micronutrient deficiencies in developing countries. However, its success hinges on market acceptance. This study investigates how the marketing aspects of GR influence consumers' purchase intentions in Bangladesh and the Philippines. The Expectation Confirmation Theory (ECT) is employed to analyze the role of expectations regarding the marketing mix components (i.e. product, price, place, promotion), risk perceptions, performance expectations, and expected satisfaction on consumers' purchase intentions. Data from online surveys in Bangladesh (n = 391) and the Philippines (n = 354), collected using convenience sampling, were analyzed using structural equation modeling. Findings reveal that positive expectations toward the marketing mix, performance, and satisfaction increase consumers' purchase intention of GR, whereas risk perceptions have a negative influence. Additionally, it was found that expectations toward all four marketing mix components significantly affect purchase intention in Bangladesh. However, only product and promotion have a notable influence in the Philippines. These results emphasize the importance of effectively addressing consumers' marketing expectations to help ensure a successful implementation. This study is novel as it delves into consumers' purchase intentions for a GM biofortified crop and their expectations for different aspects of its future marketing (i.e. product, price, place, promotion), performance, and satisfaction. If GR is commercialized, future research should validate these expectations based on actual consumer experiences. Additionally, longitudinal studies could track changes in consumer expectations over time, identifying consistently valued marketing elements and offering a valuable technique for product development before launch.
黄金大米(GR)是一种富含维生素 A 的转基因大米,有望解决发展中国家的微量营养素缺乏问题。然而,其成功与否取决于市场的接受程度。本研究调查了转基因大米的营销方面如何影响孟加拉国和菲律宾消费者的购买意向。研究采用了预期确认理论(ECT)来分析营销组合要素(即产品、价格、地点、促销)、风险认知、绩效预期和预期满意度的预期对消费者购买意愿的影响。我们使用结构方程模型分析了在孟加拉国(n = 391)和菲律宾(n = 354)通过便利抽样收集的在线调查数据。研究结果表明,对营销组合、绩效和满意度的积极预期会增加消费者对 GR 的购买意向,而风险认知则会产生负面影响。此外,研究还发现,在孟加拉国,对所有四个营销组合要素的期望都会显著影响购买意向。然而,在菲律宾,只有产品和促销有明显的影响。这些结果表明,有效满足消费者的营销期望对确保成功实施营销组合非常重要。本研究的新颖之处在于,它深入探讨了消费者对转基因生物强化作物的购买意向及其对未来营销(即产品、价格、地点、促销)、绩效和满意度等不同方面的期望。如果转基因生物强化作物商业化,未来的研究应根据消费者的实际体验来验证这些预期。此外,纵向研究还可以跟踪消费者期望值随时间推移而发生的变化,从而确定始终受到重视的营销要素,并为产品上市前的开发提供有价值的技术。
{"title":"Golden opportunities? How marketing expectations drive purchase intentions of golden rice in Bangladesh and the Philippines.","authors":"Dilshad Zahan Ethen, Maimuna Begum, Berre Deltomme, Md Rasheduzzaman, Josefina F Ballesteros, Riza Abilgos-Ramos, Mohammad Jahangir Alam, Alice Onek Atimango, Hans De Steur","doi":"10.1080/21645698.2024.2418161","DOIUrl":"10.1080/21645698.2024.2418161","url":null,"abstract":"<p><p>Golden Rice (GR), genetically modified (GM) rice enriched with provitamin A, holds promise to address micronutrient deficiencies in developing countries. However, its success hinges on market acceptance. This study investigates how the marketing aspects of GR influence consumers' purchase intentions in Bangladesh and the Philippines. The Expectation Confirmation Theory (ECT) is employed to analyze the role of expectations regarding the marketing mix components (i.e. product, price, place, promotion), risk perceptions, performance expectations, and expected satisfaction on consumers' purchase intentions. Data from online surveys in Bangladesh (<i>n</i> = 391) and the Philippines (<i>n</i> = 354), collected using convenience sampling, were analyzed using structural equation modeling. Findings reveal that positive expectations toward the marketing mix, performance, and satisfaction increase consumers' purchase intention of GR, whereas risk perceptions have a negative influence. Additionally, it was found that expectations toward all four marketing mix components significantly affect purchase intention in Bangladesh. However, only product and promotion have a notable influence in the Philippines. These results emphasize the importance of effectively addressing consumers' marketing expectations to help ensure a successful implementation. This study is novel as it delves into consumers' purchase intentions for a GM biofortified crop and their expectations for different aspects of its future marketing (i.e. product, price, place, promotion), performance, and satisfaction. If GR is commercialized, future research should validate these expectations based on actual consumer experiences. Additionally, longitudinal studies could track changes in consumer expectations over time, identifying consistently valued marketing elements and offering a valuable technique for product development before launch.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"316-335"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.
{"title":"Genome editing in Sub-Saharan Africa: a game-changing strategy for climate change mitigation and sustainable agriculture.","authors":"Peter Amoah, Abdoul-Razak Oumarou Mahamane, Moise Hubert Byiringiro, Neo Jeremiah Mahula, Nyimasata Manneh, Yetunde Ruth Oluwasegun, Abebawork Tilahun Assfaw, Hellen Mawia Mukiti, Abubakar Danlami Garba, Felicity Kido Chiemeke, Omena Bernard Ojuederie, Bunmi Olasanmi","doi":"10.1080/21645698.2024.2411767","DOIUrl":"10.1080/21645698.2024.2411767","url":null,"abstract":"<p><p>Sub-Saharan Africa's agricultural sector faces a multifaceted challenge due to climate change consisting of high temperatures, changing precipitation trends, alongside intensified pest and disease outbreaks. Conventional plant breeding methods have historically contributed to yield gains in Africa, and the intensifying demand for food security outpaces these improvements due to a confluence of factors, including rising urbanization, improved living standards, and population growth. To address escalating food demands amidst urbanization, rising living standards, and population growth, a paradigm shift toward more sustainable and innovative crop improvement strategies is imperative. Genome editing technologies offer a promising avenue for achieving sustained yield increases while bolstering resilience against escalating biotic and abiotic stresses associated with climate change. Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein (CRISPR/Cas) is unique due to its ubiquity, efficacy, alongside precision, making it a pivotal tool for Sub-Saharan African crop improvement. This review highlights the challenges and explores the prospect of gene editing to secure the region's future foods.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"279-302"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-10-01DOI: 10.1080/21645698.2024.2403776
Yanping Wei, Quan Yuan, Dalal Sulaiman Alshaya, Abdul Waheed, Kotb A Attia, Sajid Fiaz, Muhammad Shahid Iqbal
CPSF30, a key polyadenylation factor, also serves as an m6A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in Arabidopsis thaliana, as evidenced by infection experiments on the engineered cpsf30 mutant. Among the two isoforms, CPSF30-L, which were characterized with m6A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m6A components revealed potential involvement of the m6A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and cpsf30 mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.
{"title":"Characterizing the impact of CPSF30 gene disruption on TuMV infection in <i>Arabidopsis thaliana</i>.","authors":"Yanping Wei, Quan Yuan, Dalal Sulaiman Alshaya, Abdul Waheed, Kotb A Attia, Sajid Fiaz, Muhammad Shahid Iqbal","doi":"10.1080/21645698.2024.2403776","DOIUrl":"10.1080/21645698.2024.2403776","url":null,"abstract":"<p><p>CPSF30, a key polyadenylation factor, also serves as an m<sup>6</sup>A reader, playing a crucial role in determining RNA fate post-transcription. While its homologs mammals are known to be vital for viral replication and immune evasion, the full scope of CPSF30 in plant, particular in viral regulation, remains less explored. Our study demonstrates that CPSF30 significantly facilitates the infection of turnip mosaic virus (TuMV) in <i>Arabidopsis thaliana</i>, as evidenced by infection experiments on the engineered <i>cpsf30</i> mutant. Among the two isoforms, CPSF30-L, which were characterized with m<sup>6</sup>A binding activity, emerged as the primary isoform responding to TuMV infection. Analysis of m<sup>6</sup>A components revealed potential involvement of the m<sup>6</sup>A machinery in regulating TuMV infection. In contrast, CPSF30-S exhibited distinct subcellular localization, coalescing with P-body markers (AtDCP1 and AtDCP2) in cytoplasmic granules, suggesting divergent regulatory mechanisms between the isoforms. Furthermore, comprehensive mRNA-Seq and miRNA-Seq analysis of Col-0 and <i>cpsf30</i> mutants revealed global transcriptional reprogramming, highlighting CPSF30's role in selectively modulating gene expression during TuMV infection. In conclusion, this research underscores CPSF30's critical role in the TuMV lifecycle and sets the stage for further exploration of its function in plant viral regulation.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"1-17"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-06-10DOI: 10.1080/21645698.2024.2365481
Joseph Opoku Gakpo, Dennis Baffour-Awuah
Ghana's parliament in 2011 passed the Biosafety Act to allow for the application of genetically modified organism (GMO) technology in the country's agriculture. In a vibrant democracy, there have been extensive media discussions on whether GM crops will benefit or harm citizens. In June 2022, the state GMO regulator, the National Biosafety Authority (NBA), approved the country's first GM crop (Bt cowpea) for environmental release, declaring the crop does not present an altered environmental risk or a food/feed safety concern. This study identified 3 of the country's most vibrant digital news outlets and did a content analysis of all GMO stories reported 18 months pre- and post-approval to assess whether the approval changed the focus of GMO issues the media reports on. 91 articles were identified. The results show media reports on the likely impact of GMOs on the country's food security shot up after the approval. However, media reports on the possible health, sociocultural, and environmental impact of GMOs declined. We observe the media and the public appear interested in deliberations on how the technology could address or worsen food insecurity and urge agricultural biotechnology actors in Ghana to focus on that in their sensitization activities.
{"title":"The evolution of media reportage on GMOs in Ghana following approval of first GM crop.","authors":"Joseph Opoku Gakpo, Dennis Baffour-Awuah","doi":"10.1080/21645698.2024.2365481","DOIUrl":"10.1080/21645698.2024.2365481","url":null,"abstract":"<p><p>Ghana's parliament in 2011 passed the Biosafety Act to allow for the application of genetically modified organism (GMO) technology in the country's agriculture. In a vibrant democracy, there have been extensive media discussions on whether GM crops will benefit or harm citizens. In June 2022, the state GMO regulator, the National Biosafety Authority (NBA), approved the country's first GM crop (Bt cowpea) for environmental release, declaring the crop does not present an altered environmental risk or a food/feed safety concern. This study identified 3 of the country's most vibrant digital news outlets and did a content analysis of all GMO stories reported 18 months pre- and post-approval to assess whether the approval changed the focus of GMO issues the media reports on. 91 articles were identified. The results show media reports on the likely impact of GMOs on the country's food security shot up after the approval. However, media reports on the possible health, sociocultural, and environmental impact of GMOs declined. We observe the media and the public appear interested in deliberations on how the technology could address or worsen food insecurity and urge agricultural biotechnology actors in Ghana to focus on that in their sensitization activities.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"16-27"},"PeriodicalIF":3.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel underwater in-situ wire-based laser additive manufacturing (ULAM) technology is proposed for the in-service repair of underwater components in nuclear power plant. Duplex stainless steel (DSS) obtained in air and underwater environments were analysed using material characterisation and testing methods. The effects of underwater additive environments on the microstructure evolution, mechanical properties and corrosion resistance of the specimens were investigated. The results show that the laser heat input is consumed to balance the heat loss of the water-cooled base material during the underwater laser additive manufacturing process, leading to a reduction in the heat input to the molten pool. Underwater specimen exhibit a two-phase balance, with small ferrite grain boundary angles, resulting in better tensile strength and corrosion resistance. Laser reheat treatment leads to a phase change in microstructure, which can enhance the microhardness and the tensile strength. The ULAM system can meet the requirements of actual engineering for cladding layer.
{"title":"Microstructure and properties of underwater in-situ wire-based laser additive manufactured duplex stainless steel","authors":"Congwei Li, Jialei Zhu, Caimei Wang, Caiyan Deng, Lei Cui, Xiaochun Zhang, Chenglu Zhao, Xiangdong Jiao","doi":"10.1080/17452759.2024.2401925","DOIUrl":"https://doi.org/10.1080/17452759.2024.2401925","url":null,"abstract":"A novel underwater in-situ wire-based laser additive manufacturing (ULAM) technology is proposed for the in-service repair of underwater components in nuclear power plant. Duplex stainless steel (DSS) obtained in air and underwater environments were analysed using material characterisation and testing methods. The effects of underwater additive environments on the microstructure evolution, mechanical properties and corrosion resistance of the specimens were investigated. The results show that the laser heat input is consumed to balance the heat loss of the water-cooled base material during the underwater laser additive manufacturing process, leading to a reduction in the heat input to the molten pool. Underwater specimen exhibit a two-phase balance, with small ferrite grain boundary angles, resulting in better tensile strength and corrosion resistance. Laser reheat treatment leads to a phase change in microstructure, which can enhance the microhardness and the tensile strength. The ULAM system can meet the requirements of actual engineering for cladding layer.","PeriodicalId":23756,"journal":{"name":"Virtual and Physical Prototyping","volume":"14 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-05-20DOI: 10.1080/15476278.2024.2356341
Shuo Wang, Rubin Wu, Qincong Chen, Tao Liu, Liu Li
Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) exhibit considerable therapeutic potential for myocardial regeneration. In our investigation, we delved into their impact on various aspects of myocardial infarction (MI), including cardiac function, tissue damage, inflammation, and macrophage polarization in a murine model. We meticulously isolated the exosomes from TNF-α-treated BMSCs and evaluated their therapeutic efficacy in a mouse MI model induced by coronary artery ligation surgery. Our comprehensive analysis, incorporating ultrasound, serum assessment, Western blot, and qRT-PCR, revealed that exosomes from TNF-α-treated BMSCs demonstrated significant therapeutic potential in reducing MI-induced injury. Treatment with these exosomes resulted in improved cardiac function, reduced infarct area, and increased left ventricular wall thickness in MI mice. On a mechanistic level, exosome treatment fostered M2 macrophage polarization while concurrently suppressing M1 polarization. Hence, exosomes derived from TNF-α-treated BMSCs emerge as a promising therapeutic strategy for alleviating MI injury in a mouse model.
{"title":"Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice.","authors":"Shuo Wang, Rubin Wu, Qincong Chen, Tao Liu, Liu Li","doi":"10.1080/15476278.2024.2356341","DOIUrl":"10.1080/15476278.2024.2356341","url":null,"abstract":"<p><p>Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) exhibit considerable therapeutic potential for myocardial regeneration. In our investigation, we delved into their impact on various aspects of myocardial infarction (MI), including cardiac function, tissue damage, inflammation, and macrophage polarization in a murine model. We meticulously isolated the exosomes from TNF-α-treated BMSCs and evaluated their therapeutic efficacy in a mouse MI model induced by coronary artery ligation surgery. Our comprehensive analysis, incorporating ultrasound, serum assessment, Western blot, and qRT-PCR, revealed that exosomes from TNF-α-treated BMSCs demonstrated significant therapeutic potential in reducing MI-induced injury. Treatment with these exosomes resulted in improved cardiac function, reduced infarct area, and increased left ventricular wall thickness in MI mice. On a mechanistic level, exosome treatment fostered M2 macrophage polarization while concurrently suppressing M1 polarization. Hence, exosomes derived from TNF-α-treated BMSCs emerge as a promising therapeutic strategy for alleviating MI injury in a mouse model.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"20 1","pages":"2356341"},"PeriodicalIF":1.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110693/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141066153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-01-18DOI: 10.1080/21645698.2023.2299503
Bridget F O'Neill, Chad Boeckman, Kristine LeRoy, Chris Linderblood, Taylor Olson, Rachel Woods, Mary Challender
Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (Diabrotica spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from Ophioglossum pendulum and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.
{"title":"An environmental risk assessment of IPD079Ea: a protein derived from <i>Ophioglossum pendulum</i> with activity against <i>Diabrotica</i> spp.In maize.","authors":"Bridget F O'Neill, Chad Boeckman, Kristine LeRoy, Chris Linderblood, Taylor Olson, Rachel Woods, Mary Challender","doi":"10.1080/21645698.2023.2299503","DOIUrl":"10.1080/21645698.2023.2299503","url":null,"abstract":"<p><p>Farmers in North America face significant pressure from insects in their maize fields, particularly from corn rootworm (<i>Diabrotica</i> spp.). Research into proteins capable of insecticidal activity has found several produced by ferns. One protein, IPD079Ea, was derived from <i>Ophioglossum pendulum</i> and has shown activity against corn rootworm. An environmental risk assessment was conducted for maize event DP-915635-4, which provides control of corn rootworms via expression of the IPD079Ea protein. This assessment focused on IPD079Ea and characterized potential exposure and hazard to non-target organisms (NTOs). For exposure, estimated environmental concentrations (EECs) were calculated. For hazard, laboratory dietary toxicity studies were conducted with IPD079Ea and surrogate non-target organisms. Environmental risk was characterized by comparing hazard and exposure to calculate the margin of exposure (MOE). Based on the MOE values for DP-915635-4 maize, the IPD079Ea protein is not expected to result in unreasonable adverse effects on beneficial NTO populations at environmentally relevant concentrations.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"15-31"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139492009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-31Epub Date: 2024-07-09DOI: 10.1080/21645698.2024.2376415
Paul Chege, Julia Njagi, John Komen, Godfrey Ngure, John Muriuki, Margaret Karembu
The ability to transfer information about the performance, safety, and environmental impacts of a genetically modified (GM) crop from confined field trials (CFTs) conducted in one location to another is increasingly gaining importance in biosafety regulatory assessment and decision-making. The CFT process can be expensive, time-consuming, and logistically challenging. Data transportability can help overcome these challenges by allowing the use of data obtained from CFTs conducted in one country to inform regulatory decision-making in another country. Applicability of transported CFT data would be particularly beneficial to the public sector product developers and small enterprises that develop innovative GM events but cannot afford to replicate redundant CFTs, as well as regulatory authorities seeking to improve the deployment of limited resources. This review investigates case studies where transported CFT data have successfully been applied in biosafety assessment and decision-making, with an outlook of how African countries could benefit from a similar approach.
{"title":"Best practices for acceptability of GM crops field trials conclusions: lessons for Africa.","authors":"Paul Chege, Julia Njagi, John Komen, Godfrey Ngure, John Muriuki, Margaret Karembu","doi":"10.1080/21645698.2024.2376415","DOIUrl":"10.1080/21645698.2024.2376415","url":null,"abstract":"<p><p>The ability to transfer information about the performance, safety, and environmental impacts of a genetically modified (GM) crop from confined field trials (CFTs) conducted in one location to another is increasingly gaining importance in biosafety regulatory assessment and decision-making. The CFT process can be expensive, time-consuming, and logistically challenging. Data transportability can help overcome these challenges by allowing the use of data obtained from CFTs conducted in one country to inform regulatory decision-making in another country. Applicability of transported CFT data would be particularly beneficial to the public sector product developers and small enterprises that develop innovative GM events but cannot afford to replicate redundant CFTs, as well as regulatory authorities seeking to improve the deployment of limited resources. This review investigates case studies where transported CFT data have successfully been applied in biosafety assessment and decision-making, with an outlook of how African countries could benefit from a similar approach.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"15 1","pages":"222-232"},"PeriodicalIF":4.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236291/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}