首页 > 最新文献

农林科学最新文献

英文 中文
IF:
New insights into the effects of dietary amino acid composition on meat quality in pigs: A review.
IF 7.1 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2025-03-01 Epub Date: 2024-12-03 DOI: 10.1016/j.meatsci.2024.109721
Jialong Liao, Pengguang Zhang, Jingdong Yin, Xin Zhang

Pork is an affordable protein source with higher nutrient density. In recent years, meat quality in pigs is getting increasing attention, which has a direct impact on the economic value of pork. Dietary amino acids play a key role in pig production, not only regulating pig growth and health, but also contributing significantly to meat quality. In this review, we discuss the effect of skeletal muscle composition on meat quality. Importantly, we summarize the levels of essential amino acids (EAAs), such as lysine, methionine, threonine, tryptophan and branched-chain amino acids (BCAAs), in diets for finishing pigs to improve meat quality. The beneficial effects of flavor amino acids on meat quality, including flavor production, muscle fiber-type composition and intramuscular fat deposition, are further systematically summarized. We also focus on the impact of dietary amino acid levels on environmental benefits, although research in this area is still limited. Considering that the previously established EAA requirements are based on the principle of maximizing growth rate and feed conversion, this review will provide new insights into the effects of dietary amino acids on aspects of meat quality and highlight the current gaps to promote future research.

{"title":"New insights into the effects of dietary amino acid composition on meat quality in pigs: A review.","authors":"Jialong Liao, Pengguang Zhang, Jingdong Yin, Xin Zhang","doi":"10.1016/j.meatsci.2024.109721","DOIUrl":"10.1016/j.meatsci.2024.109721","url":null,"abstract":"<p><p>Pork is an affordable protein source with higher nutrient density. In recent years, meat quality in pigs is getting increasing attention, which has a direct impact on the economic value of pork. Dietary amino acids play a key role in pig production, not only regulating pig growth and health, but also contributing significantly to meat quality. In this review, we discuss the effect of skeletal muscle composition on meat quality. Importantly, we summarize the levels of essential amino acids (EAAs), such as lysine, methionine, threonine, tryptophan and branched-chain amino acids (BCAAs), in diets for finishing pigs to improve meat quality. The beneficial effects of flavor amino acids on meat quality, including flavor production, muscle fiber-type composition and intramuscular fat deposition, are further systematically summarized. We also focus on the impact of dietary amino acid levels on environmental benefits, although research in this area is still limited. Considering that the previously established EAA requirements are based on the principle of maximizing growth rate and feed conversion, this review will provide new insights into the effects of dietary amino acids on aspects of meat quality and highlight the current gaps to promote future research.</p>","PeriodicalId":389,"journal":{"name":"Meat Science","volume":"221 ","pages":"109721"},"PeriodicalIF":7.1,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OPA1 deficiency induces mitophagy through PINK1/Parkin pathway during bovine oocytes maturation.
IF 2.4 2区 农林科学 Q3 REPRODUCTIVE BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-04 DOI: 10.1016/j.theriogenology.2024.12.004
Tiancang Han, Yuhan Zhao, Anhui Jiao, Zhaoyang Sun, Hongbo Zhang, Dazhuo Zhao, Haijun Wang, Qingshan Gao

In vitro embryo production (IVP) technology has been increasingly applied to beef cattle breeding. In vitro maturation (IVM) technology is the basis of IVP. However, the quality of in vitro-generated mature oocytes is still poor. Mitochondria are the energy factories of oocytes, so they are crucial for oocyte quality. OPA1 is a protein located on the mitochondrial inner membrane, and its main function is to mediate mitochondrial inner membrane fusion. This work demonstrated that OPA1 is expressed at different stages of meiosis in bovine oocytes. The inhibition of OPA1 activity resulted in a reduced rate of first polar body excretion from bovine oocytes and disruption of the spindle structure. OPA1 deficiency impacted mitochondria by leading to mitochondrial dysfunction, promoting mitochondrial fission, and inducing mitophagy through the PINK1/Parkin pathway. Taken together, our findings suggest that OPA1 is essential for bovine oocyte maturation and that OPA1 deficiency leads to mitochondrial dysfunction and promotes mitochondrial fission as well as mitophagy.

{"title":"OPA1 deficiency induces mitophagy through PINK1/Parkin pathway during bovine oocytes maturation.","authors":"Tiancang Han, Yuhan Zhao, Anhui Jiao, Zhaoyang Sun, Hongbo Zhang, Dazhuo Zhao, Haijun Wang, Qingshan Gao","doi":"10.1016/j.theriogenology.2024.12.004","DOIUrl":"10.1016/j.theriogenology.2024.12.004","url":null,"abstract":"<p><p>In vitro embryo production (IVP) technology has been increasingly applied to beef cattle breeding. In vitro maturation (IVM) technology is the basis of IVP. However, the quality of in vitro-generated mature oocytes is still poor. Mitochondria are the energy factories of oocytes, so they are crucial for oocyte quality. OPA1 is a protein located on the mitochondrial inner membrane, and its main function is to mediate mitochondrial inner membrane fusion. This work demonstrated that OPA1 is expressed at different stages of meiosis in bovine oocytes. The inhibition of OPA1 activity resulted in a reduced rate of first polar body excretion from bovine oocytes and disruption of the spindle structure. OPA1 deficiency impacted mitochondria by leading to mitochondrial dysfunction, promoting mitochondrial fission, and inducing mitophagy through the PINK1/Parkin pathway. Taken together, our findings suggest that OPA1 is essential for bovine oocyte maturation and that OPA1 deficiency leads to mitochondrial dysfunction and promotes mitochondrial fission as well as mitophagy.</p>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"234 ","pages":"51-63"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats.
IF 2.4 2区 农林科学 Q3 REPRODUCTIVE BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-18 DOI: 10.1016/j.theriogenology.2024.12.015
Mònica Ferrer-Roda, Maria-Teresa Paramio, Judith Vila-Beltrán, Dolors Izquierdo

Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both. To determine cumulus-oocyte communication, transzonal projections (TZP) density at 0h, 6h, 12h and 24h of IVM were evaluated. After IVM, mitochondrial activity, intracellular ROS and glutathione (GSH) levels, the epidermal growth factor receptor (EGFR) expression in oocytes and cumulus cells, and cumulus expansion were assessed. Blastocyst production and quality were evaluated after parthenogenetic activation (PA) and IVF. IVM supplementation with BMP15 increased the TZP density during the first 6 h of culture. After IVM, BMP15 increased mitochondrial activity, EGFR expression in oocytes and cumulus cells, and cumulus expansion compared to control, but ROS and GSH levels were similar to control. BMP15 improved blastocyst production following PA (15.5 % vs 6.3 %) and the number of cells in the blastocyst inner cell mass. No differences were observed on blastocyst production or quality following IVF. IVM supplementation with GDF9 did not improve results from control group in any parameters studied. Additionally, GDF9 in combination with BMP15 only improved mitochondrial activity and cumulus expansion over control. In conclusion, IVM medium supplementation with BMP15 (100 ng/ml) improves COCs quality parameters and PA-blastocyst production and quality of prepubertal goat oocytes. However, GDF9 (100 ng/mL) did not have any beneficial effect in this study and was possibly antagonistic to BMP15.

{"title":"Effect of BMP15 and GDF9 in the IVM medium on subsequent oocyte competence and embryo development of prepubertal goats.","authors":"Mònica Ferrer-Roda, Maria-Teresa Paramio, Judith Vila-Beltrán, Dolors Izquierdo","doi":"10.1016/j.theriogenology.2024.12.015","DOIUrl":"10.1016/j.theriogenology.2024.12.015","url":null,"abstract":"<p><p>Oocyte-secreted factors (OSFs), such as BMP15 and GDF9, are soluble paracrine factors that drive cumulus cell differentiation and function, sustaining oocyte competence acquisition and embryo development. This study aimed to assess the effect of BMP15 and GDF9 on IVM medium of prepubertal goat oocytes. COCs were in vitro matured in absence (control group) or presence of 100 ng/mL of BMP15, GDF9, or both. To determine cumulus-oocyte communication, transzonal projections (TZP) density at 0h, 6h, 12h and 24h of IVM were evaluated. After IVM, mitochondrial activity, intracellular ROS and glutathione (GSH) levels, the epidermal growth factor receptor (EGFR) expression in oocytes and cumulus cells, and cumulus expansion were assessed. Blastocyst production and quality were evaluated after parthenogenetic activation (PA) and IVF. IVM supplementation with BMP15 increased the TZP density during the first 6 h of culture. After IVM, BMP15 increased mitochondrial activity, EGFR expression in oocytes and cumulus cells, and cumulus expansion compared to control, but ROS and GSH levels were similar to control. BMP15 improved blastocyst production following PA (15.5 % vs 6.3 %) and the number of cells in the blastocyst inner cell mass. No differences were observed on blastocyst production or quality following IVF. IVM supplementation with GDF9 did not improve results from control group in any parameters studied. Additionally, GDF9 in combination with BMP15 only improved mitochondrial activity and cumulus expansion over control. In conclusion, IVM medium supplementation with BMP15 (100 ng/ml) improves COCs quality parameters and PA-blastocyst production and quality of prepubertal goat oocytes. However, GDF9 (100 ng/mL) did not have any beneficial effect in this study and was possibly antagonistic to BMP15.</p>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"234 ","pages":"164-173"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142877898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Celebrating a milestone and looking at the future of Theriogenology.
IF 2.4 2区 农林科学 Q3 REPRODUCTIVE BIOLOGY Pub Date : 2025-03-01 Epub Date: 2024-12-13 DOI: 10.1016/j.theriogenology.2024.12.013
Marc-Antoine Driancourt, Pierre Comizzoli, Leonardo F C Brito

In 2024, Theriogenology turned 50! The purpose of this special issue is to emphasize the pivotal role of reproduction and fertility in improving the efficacy and sustainability of animal production in a range of environments (different production systems, different climates, or different consumer-related expectations). A first series of articles summarizes the possibilities and constraints linked to embryo production (in vivo and in vitro) as well as the potential of novel embryo technologies. A second series provides an overview of the future of production and reproduction for the next 20 years in different species and geographical areas. A last series aims to illustrate the diversity and quality of the original research recently published in Theriogenology. Please enjoy the special issue at https://www.sciencedirect.com/special-issue/10JH4BB3RP7.

{"title":"Celebrating a milestone and looking at the future of Theriogenology.","authors":"Marc-Antoine Driancourt, Pierre Comizzoli, Leonardo F C Brito","doi":"10.1016/j.theriogenology.2024.12.013","DOIUrl":"10.1016/j.theriogenology.2024.12.013","url":null,"abstract":"<p><p>In 2024, Theriogenology turned 50! The purpose of this special issue is to emphasize the pivotal role of reproduction and fertility in improving the efficacy and sustainability of animal production in a range of environments (different production systems, different climates, or different consumer-related expectations). A first series of articles summarizes the possibilities and constraints linked to embryo production (in vivo and in vitro) as well as the potential of novel embryo technologies. A second series provides an overview of the future of production and reproduction for the next 20 years in different species and geographical areas. A last series aims to illustrate the diversity and quality of the original research recently published in Theriogenology. Please enjoy the special issue at https://www.sciencedirect.com/special-issue/10JH4BB3RP7.</p>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"234 ","pages":"151-152"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperation mechanism of flavonoid transformation by Bifidobacterium animalis subsp. lactis and Lacticaseibacillus paracasei. 动物双歧杆菌亚种和副乳酸杆菌转化类黄酮的合作机制
IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-02 Epub Date: 2024-12-10 DOI: 10.1016/j.ijfoodmicro.2024.111019
Chenxi Wang, Yixuan Wang, Yingdi Teng, Junkai Kong, Fujin Dong, Jie Du, Yan Zhang

Elaeagnus moorcroftii Wall. ex Schlecht (EWS) as a suitable food matrix contains abundant flavonoids for promoting human health, this study aimed to use flavonoid-targeted metabolomics and transcriptome sequencing to investigate the transformation of flavonoids in EWS juice (EWSJ) by mono- and mixed-cultures fermentations of Bifidobacterium animalis subsp. lactis HN-3 (B.an3) and Lacticaseibacillus paracasei YL-29 (L.cp29). A total of 33 flavonoids were identified in mono- and mixed-cultures fermented EWSJ. Among them, fermentation by B.an3 produced specific deglycosylation products (kaempferol (17.6 mmol/L) and luteolin (4.5 mmol/L)) and methoxylation products (syringaldehyde (59.05 mmol/L)), and fermentation by L.cp29 resulted in a specific deglycosylation product (quercetin (9.2 mmol/L)). The co-culture fermentation further increased the levels of isorhamnetin (52.3 mmol/L), and produced a specific product (homoplantaginin (0.03 mmol/L)), which significantly increased the bioactive-form flavonoids. Moreover, we analyzed changes in different flavonoid metabolites and differential genes before and after fermentation. After L.cp29 fermentation the expression of glycoside hydrolases and oxidoreductases were increased compared to other groups. After B.an3 fermentation the expression of isomerases and synthetases were increased compared to other groups. In particular, 6-phosphogluconolactonase (Pgl) and glucose-6-phosphate isomerase (Pgi) were increased in B.an3 fermentation. Thus, we validated the predicted transformation reactions by the biotransformation of flavonoids by the collected strains and crude enzyme extracts of B.an3 and L.cp29. These findings provided a basis for the development of functional plant-based foods with enhanced bioactive flavonoids.

Elaeagnus moorcroftii Wall. ex Schlecht(EWS)作为一种合适的食物基质,含有丰富的黄酮类化合物,可促进人体健康,本研究旨在利用黄酮类化合物靶向代谢组学和转录组测序技术,研究EWS果汁(EWSJ)中黄酮类化合物在动物双歧杆菌亚种HN-3(B.an3)和副酸性乳酸杆菌YL-29(L.cp29)单培养基和混合培养基发酵过程中的转化。乳酸双歧杆菌HN-3(B.an3)和副酸乳杆菌YL-29(L.cp29)的混合培养发酵。在单培养基和混合培养基发酵的 EWSJ 中,共鉴定出 33 种黄酮类化合物。其中,B.an3发酵产生了特定的脱糖产物(山奈酚(17.6 mmol/L)和木犀草素(4.5 mmol/L))和甲氧基化产物(丁香醛(59.05 mmol/L)),L.cp29发酵产生了特定的脱糖产物(槲皮素(9.2 mmol/L))。共培养发酵进一步提高了异鼠李素(52.3 mmol/L)的水平,并产生了一种特异产物(同型金雀花素(0.03 mmol/L)),从而显著提高了生物活性形式黄酮类化合物的水平。此外,我们还分析了发酵前后不同类黄酮代谢物和差异基因的变化。与其他组相比,L.cp29 发酵后苷水解酶和氧化还原酶的表达量增加。与其他组相比,B.an3 发酵后异构酶和合成酶的表达量增加。特别是,6-磷酸葡萄糖酸内酯酶(Pgl)和葡萄糖-6-磷酸异构酶(Pgi)在 B.an3 发酵过程中有所增加。因此,我们通过收集的菌株以及 B.an3 和 L.cp29 的粗酶提取物对黄酮类化合物的生物转化验证了预测的转化反应。这些发现为开发含有更多生物活性类黄酮的功能性植物性食品提供了依据。
{"title":"Cooperation mechanism of flavonoid transformation by Bifidobacterium animalis subsp. lactis and Lacticaseibacillus paracasei.","authors":"Chenxi Wang, Yixuan Wang, Yingdi Teng, Junkai Kong, Fujin Dong, Jie Du, Yan Zhang","doi":"10.1016/j.ijfoodmicro.2024.111019","DOIUrl":"10.1016/j.ijfoodmicro.2024.111019","url":null,"abstract":"<p><p>Elaeagnus moorcroftii Wall. ex Schlecht (EWS) as a suitable food matrix contains abundant flavonoids for promoting human health, this study aimed to use flavonoid-targeted metabolomics and transcriptome sequencing to investigate the transformation of flavonoids in EWS juice (EWSJ) by mono- and mixed-cultures fermentations of Bifidobacterium animalis subsp. lactis HN-3 (B.an3) and Lacticaseibacillus paracasei YL-29 (L.cp29). A total of 33 flavonoids were identified in mono- and mixed-cultures fermented EWSJ. Among them, fermentation by B.an3 produced specific deglycosylation products (kaempferol (17.6 mmol/L) and luteolin (4.5 mmol/L)) and methoxylation products (syringaldehyde (59.05 mmol/L)), and fermentation by L.cp29 resulted in a specific deglycosylation product (quercetin (9.2 mmol/L)). The co-culture fermentation further increased the levels of isorhamnetin (52.3 mmol/L), and produced a specific product (homoplantaginin (0.03 mmol/L)), which significantly increased the bioactive-form flavonoids. Moreover, we analyzed changes in different flavonoid metabolites and differential genes before and after fermentation. After L.cp29 fermentation the expression of glycoside hydrolases and oxidoreductases were increased compared to other groups. After B.an3 fermentation the expression of isomerases and synthetases were increased compared to other groups. In particular, 6-phosphogluconolactonase (Pgl) and glucose-6-phosphate isomerase (Pgi) were increased in B.an3 fermentation. Thus, we validated the predicted transformation reactions by the biotransformation of flavonoids by the collected strains and crude enzyme extracts of B.an3 and L.cp29. These findings provided a basis for the development of functional plant-based foods with enhanced bioactive flavonoids.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"429 ","pages":"111019"},"PeriodicalIF":5.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142828488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold-active β-galactosidase from Weissella confusa SW1 for the preparation of low-lactose milk.
IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-02 Epub Date: 2024-12-09 DOI: 10.1016/j.ijfoodmicro.2024.111003
Yingxin Huo, Fanghong Zou, Zihui You, Guoyan Zhao, Meixue Dai, Susu Zhang

β-Galactosidases can be used to degrade lactose in milk to prepare lactose-free milk, which is sweeter than ordinary milk and suitable for people with lactose intolerance. The β-galactosidase gene (WcGal2809) was cloned from Weissella confusa SW1 and successfully expressed in Escherichia coli BL21(DE3). The active WcGal2809 was identified to be a heterodimer composed of two distinct proteins LacL (72.4 kDa) and LacM (33.2 kDa), and it belonged to glycoside hydrolase family 2. The purified WcGal2809 showed the maximum activity at 25 °C and pH 7.0 for o-nitrophenyl-β-D-galactopyranoside (oNPG). WcGal2809 was strongly activated by Mn2+, Mg2+, and Fe2+, and significantly inhibited by Zn2+, Cu2+, and Ni+. The activity of WcGal2809 decreased quickly after incubation at 40 °C or higher temperature, suggesting it was a cold-adapted enzyme. Additionally, 6 U of WcGal2809 could hydrolyze 85.23 % of the lactose in 1 mL of milk at 25 °C after incubation for 48 h, while 2 U of WcGal2809 could hydrolyze 74.40 % of the lactose in 1 mL of milk at 25 °C after incubation for 7 d. Taken together, WcGal2809 is a promising industrial biocatalyst for efficiently hydrolyzing lactose in milk at room temperature during milk storage or transportation.

{"title":"Cold-active β-galactosidase from Weissella confusa SW1 for the preparation of low-lactose milk.","authors":"Yingxin Huo, Fanghong Zou, Zihui You, Guoyan Zhao, Meixue Dai, Susu Zhang","doi":"10.1016/j.ijfoodmicro.2024.111003","DOIUrl":"10.1016/j.ijfoodmicro.2024.111003","url":null,"abstract":"<p><p>β-Galactosidases can be used to degrade lactose in milk to prepare lactose-free milk, which is sweeter than ordinary milk and suitable for people with lactose intolerance. The β-galactosidase gene (WcGal2809) was cloned from Weissella confusa SW1 and successfully expressed in Escherichia coli BL21(DE3). The active WcGal2809 was identified to be a heterodimer composed of two distinct proteins LacL (72.4 kDa) and LacM (33.2 kDa), and it belonged to glycoside hydrolase family 2. The purified WcGal2809 showed the maximum activity at 25 °C and pH 7.0 for o-nitrophenyl-β-D-galactopyranoside (oNPG). WcGal2809 was strongly activated by Mn<sup>2+</sup>, Mg<sup>2+</sup>, and Fe<sup>2+</sup>, and significantly inhibited by Zn<sup>2+</sup>, Cu<sup>2+</sup>, and Ni<sup>+</sup>. The activity of WcGal2809 decreased quickly after incubation at 40 °C or higher temperature, suggesting it was a cold-adapted enzyme. Additionally, 6 U of WcGal2809 could hydrolyze 85.23 % of the lactose in 1 mL of milk at 25 °C after incubation for 48 h, while 2 U of WcGal2809 could hydrolyze 74.40 % of the lactose in 1 mL of milk at 25 °C after incubation for 7 d. Taken together, WcGal2809 is a promising industrial biocatalyst for efficiently hydrolyzing lactose in milk at room temperature during milk storage or transportation.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"429 ","pages":"111003"},"PeriodicalIF":5.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142812491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The forgotten wine: Understanding palm wine fermentation and composition.
IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-02 Epub Date: 2024-12-12 DOI: 10.1016/j.ijfoodmicro.2024.111022
I Nyoman Sumerta, Xinwei Ruan, Kate Howell

Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.

{"title":"The forgotten wine: Understanding palm wine fermentation and composition.","authors":"I Nyoman Sumerta, Xinwei Ruan, Kate Howell","doi":"10.1016/j.ijfoodmicro.2024.111022","DOIUrl":"10.1016/j.ijfoodmicro.2024.111022","url":null,"abstract":"<p><p>Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"429 ","pages":"111022"},"PeriodicalIF":5.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The changing landscape of scientific publishing: A focus on food microbiology.
IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-02 Epub Date: 2024-12-27 DOI: 10.1016/j.ijfoodmicro.2024.111050
Luca Cocolin
{"title":"The changing landscape of scientific publishing: A focus on food microbiology.","authors":"Luca Cocolin","doi":"10.1016/j.ijfoodmicro.2024.111050","DOIUrl":"10.1016/j.ijfoodmicro.2024.111050","url":null,"abstract":"","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":" ","pages":"111050"},"PeriodicalIF":5.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond guaiacol and halophenols: Unravelling isobutyric and isovaleric acids as new culprits in off-flavour spoilage by Alicyclobacillus spp.
IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-02 Epub Date: 2024-12-04 DOI: 10.1016/j.ijfoodmicro.2024.111002
Inês Carvalho Leonardo, António Ferreira, Maria do Rosário Bronze, Ana Patrícia Quendera, Ana Filipa Fernandes, Maria Teresa Barreto Crespo, Frédéric Bustos Gaspar

Industries that produce or use fruit-based products have faced several spoilage events, resulting in economic losses caused by product recalls and loss of consumer confidence. Some of these events correlate to the presence of Alicyclobacillus (ACB) in food products since they can produce off-flavours and odours in the final products. Guaiacol (2-methoxyphenol) and halophenols (2,6-dichlorophenol and 2,6-dibromophenol) have been widely explored as the primary culprits of off-flavour spoilage by ACB. However, different compounds might be correlated with these spoilage events. In this work, volatile metabolites produced by distinct ACB species (Alicyclobacillus acidoterrestris, Alicyclobacillus acidocaldarius, and Alicyclobacillus cycloheptanicus) in laboratory medium and fruit juices were identified by HS-SPME-GC-MS and investigated as potential spoilage-related compounds. Isobutyric acid (2-methylpropanoic acid) and isovaleric acid (3-methylbutanoic acid) were revealed to be produced by all three ACB species at concentrations that surpass the odour threshold. These cheesy, sweaty, and sour compounds were responsible for dissonant odours in peach, orange, and tomato juice, harming fruit-based products' quality. More importantly, this work suggests that ACB species previously identified as non-spoilage bacteria, based on a lack of ability to produce guaiacol and halophenols, can also threaten the juice, beverage, and dairy industries. As such, identification methods currently used in industries for ACB control in final products should be revised.

生产或使用水果类产品的行业曾多次发生腐败事件,导致产品召回和消费者信心丧失,造成经济损失。其中一些事件与食品中存在的阿利西环杆菌(ACB)有关,因为它们会在最终产品中产生异味和臭味。愈创木酚(2-甲氧基苯酚)和卤代苯酚(2,6-二氯苯酚和 2,6-二溴苯酚)被广泛认为是 ACB 导致异味的罪魁祸首。然而,这些变质事件可能与不同的化合物有关。在这项工作中,通过 HS-SPME-GC-MS 鉴定了不同 ACB 菌种(Alicyclobacillus acidoterrestris、Alicyclobacillus acidocaldarius 和 Alicyclobacillus cycloheptanicus)在实验室培养基和果汁中产生的挥发性代谢物,并将其作为潜在的腐败相关化合物进行研究。研究发现,所有三种 ACB 物种都会产生异丁酸(2-甲基丙酸)和异戊酸(3-甲基丁酸),其浓度超过了气味阈值。这些乳酪味、汗味和酸味化合物是造成桃汁、橙汁和番茄汁气味不协调的原因,从而损害了水果类产品的质量。更重要的是,这项工作表明,以前因缺乏产生愈创木酚和卤酚的能力而被确定为非滋生细菌的 ACB 物种也会威胁果汁、饮料和乳制品行业。因此,目前工业中用于控制最终产品中 ACB 的鉴定方法应予以修订。
{"title":"Beyond guaiacol and halophenols: Unravelling isobutyric and isovaleric acids as new culprits in off-flavour spoilage by Alicyclobacillus spp.","authors":"Inês Carvalho Leonardo, António Ferreira, Maria do Rosário Bronze, Ana Patrícia Quendera, Ana Filipa Fernandes, Maria Teresa Barreto Crespo, Frédéric Bustos Gaspar","doi":"10.1016/j.ijfoodmicro.2024.111002","DOIUrl":"10.1016/j.ijfoodmicro.2024.111002","url":null,"abstract":"<p><p>Industries that produce or use fruit-based products have faced several spoilage events, resulting in economic losses caused by product recalls and loss of consumer confidence. Some of these events correlate to the presence of Alicyclobacillus (ACB) in food products since they can produce off-flavours and odours in the final products. Guaiacol (2-methoxyphenol) and halophenols (2,6-dichlorophenol and 2,6-dibromophenol) have been widely explored as the primary culprits of off-flavour spoilage by ACB. However, different compounds might be correlated with these spoilage events. In this work, volatile metabolites produced by distinct ACB species (Alicyclobacillus acidoterrestris, Alicyclobacillus acidocaldarius, and Alicyclobacillus cycloheptanicus) in laboratory medium and fruit juices were identified by HS-SPME-GC-MS and investigated as potential spoilage-related compounds. Isobutyric acid (2-methylpropanoic acid) and isovaleric acid (3-methylbutanoic acid) were revealed to be produced by all three ACB species at concentrations that surpass the odour threshold. These cheesy, sweaty, and sour compounds were responsible for dissonant odours in peach, orange, and tomato juice, harming fruit-based products' quality. More importantly, this work suggests that ACB species previously identified as non-spoilage bacteria, based on a lack of ability to produce guaiacol and halophenols, can also threaten the juice, beverage, and dairy industries. As such, identification methods currently used in industries for ACB control in final products should be revised.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"429 ","pages":"111002"},"PeriodicalIF":5.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BCP4: A novel antimicrobial peptide with potent efficacy against Bacillus cereus in rice porridge.
IF 5 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Pub Date : 2025-02-02 Epub Date: 2024-11-30 DOI: 10.1016/j.ijfoodmicro.2024.111001
Weihong Tao, Wenjie Li, Ritian Jin, Duo Liang, Wuyin Weng, Rong Lin, Shen Yang

Bacillus cereus is a common foodborne pathogen that frequently contaminates rice products and produces cereulide toxins, presenting a significant risk to food safety and human health. In contrast, Bacillus subtilis is a promising source of antimicrobial peptides (AMPs). In this research, a novel AMP named BCP4 (KGKTLLQ) was discovered through the fermentation of shrimp waste with B. subtilis, which speculated that BCP4 might be generated through enzymatic hydrolysis catalyzed by endogenous enzymes naturally present in shrimp waste. BCP4 demonstrated potent antibacterial activity against B. cereus with a minimum bactericidal concentration (MBC) of 62.5 μg/mL and bacterial time-kill of 3 h. BCP4 surpassed the bactericidal efficiency of nisin (500 μg/mL), a commonly used AMP of microbial origin. BCP4 operates by causing damage to the bacterial cell wall and membrane, which allows the contents of the cell to flow out. BCP4 also penetrates the cell membrane and binds with DNA, effectively sterilizing the bacteria. Meanwhile, treatment of BCP4 with mammalian red blood cells revealed that it was nonhemolytic. Furthermore, the growth of B. cereus in rice porridge was significantly inhibited by BCP4 at a concentration of 62.5 μg/mL. This study provides a theoretical basis for using BCP4 to control B. cereus contamination.

{"title":"BCP4: A novel antimicrobial peptide with potent efficacy against Bacillus cereus in rice porridge.","authors":"Weihong Tao, Wenjie Li, Ritian Jin, Duo Liang, Wuyin Weng, Rong Lin, Shen Yang","doi":"10.1016/j.ijfoodmicro.2024.111001","DOIUrl":"10.1016/j.ijfoodmicro.2024.111001","url":null,"abstract":"<p><p>Bacillus cereus is a common foodborne pathogen that frequently contaminates rice products and produces cereulide toxins, presenting a significant risk to food safety and human health. In contrast, Bacillus subtilis is a promising source of antimicrobial peptides (AMPs). In this research, a novel AMP named BCP4 (KGKTLLQ) was discovered through the fermentation of shrimp waste with B. subtilis, which speculated that BCP4 might be generated through enzymatic hydrolysis catalyzed by endogenous enzymes naturally present in shrimp waste. BCP4 demonstrated potent antibacterial activity against B. cereus with a minimum bactericidal concentration (MBC) of 62.5 μg/mL and bacterial time-kill of 3 h. BCP4 surpassed the bactericidal efficiency of nisin (500 μg/mL), a commonly used AMP of microbial origin. BCP4 operates by causing damage to the bacterial cell wall and membrane, which allows the contents of the cell to flow out. BCP4 also penetrates the cell membrane and binds with DNA, effectively sterilizing the bacteria. Meanwhile, treatment of BCP4 with mammalian red blood cells revealed that it was nonhemolytic. Furthermore, the growth of B. cereus in rice porridge was significantly inhibited by BCP4 at a concentration of 62.5 μg/mL. This study provides a theoretical basis for using BCP4 to control B. cereus contamination.</p>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"429 ","pages":"111001"},"PeriodicalIF":5.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 J. Agric. Food. Chem. Food Funct. Compr. Rev. Food Sci. Food Saf. Fish Fish. FLAVOUR FRAG J J. Food Sci. LAND DEGRAD DEV Mol. Nutr. Food Res. Pest. Manage. Sci. Rev. Aquacult. Transboundary Emerging Dis. Food Chem. Toxicol. Food Chem. Food Control Food Hydrocolloids Food Policy Food Qual. Preference Food Res. Int. Innovative Food Sci. Emerg. Technol. Insect Biochem. Mol. Biol. J. Dairy Sci. J. Food Drug Anal. J. Food Eng. J. Funct. Foods LWT-FOOD SCI TECHNOL Meat Sci. TRENDS FOOD SCI TECH Appl. Biol. Chem. Chem. Biol. Technol. Agric. Eur. Food Res. Technol. Food Anal. Methods Food Bioprocess Technol. FOOD ENVIRON VIROL Food Biophys. Food Eng. Rev. Food Sci. Biotechnol. FOOD SECUR J VERBRAUCH LEBENSM J. Food Meas. Charact. Sugar Tech ACTA ALIMENT HUNG ACTA ICHTHYOL PISCAT Acta Vet. Scand. ACTA SCI VET ACTA VET BRNO ACTA SCI-AGRON ACTA SCI POL-HORTORU ACTA VET HUNG Agric. Food Sci. Agric. For. Entomol. AGROCHIMICA AM J ENOL VITICULT AGR ECOSYST ENVIRON Agron. J. Afr. Entomol. Am. J. Potato Res. Agrofor. Syst. Agric. Water Manage. Agron. Sustainable Dev. Agric. Syst. AM J VET RES Animal Bioscience Anim. Biotechnol. Anim. Feed Sci. Technol. ANKARA UNIV VET FAK Anim. Reprod. Sci. Anim. Reprod. Anim. Sci. J. Anim. Welfare Anim. Prod. Sci. ANIMALS-BASEL Ann. Appl. Biol. Ann. For. Sci. Annu. Rev. Entomol. Ann. Entomol. Soc. Am. APIDOLOGIE Appl. Soil Ecol. Aquacult. Rep. Aquacult. Res. Aquacult. Eng. AQUACULT INT Arch. Agron. Soil Sci. Arch. Anim. Nutr. Anim. Nutr. Annu. Rev. Food Sci. Technol. Appl. Anim. Behav. Sci. Aquacult. Nutr. Ann. Anim. Sci. Annu. Rev. Phytopathol. J FOOD SAF FOOD QUAL Arch. Insect Biochem. Physiol. AQUACULTURE AQUACULT ENV INTERAC Arid Land Res. Manage. ARQ BRAS MED VET ZOO ARTHROPOD-PLANT INTE Appl. Entomol. Zool. Austral Entomol. Aust. J. Grape Wine Res. Australas. Plant Pathol.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1