Pub Date : 2025-01-01Epub Date: 2024-12-07DOI: 10.1007/s11252-024-01649-4
Diana E Bowler, Corey T Callaghan, Jéssica F Felappi, Brittany M Mason, Robin Hutchinson, Prashant Kumar, Laurence Jones
Green-blue urban infrastructures potentially offer win-win benefits for people and nature in urban areas. Given increasing evidence of widespread declines of insects, as well as their ecological importance, there is a need to better understand the potential role of green-blue urban infrastructure for insect conservation. In this review, we evaluated 201 studies about the ability of green-blue infrastructure to support insect diversity. Most studies were focused on the role of local and landscape-level characteristics of green-blue infrastructure. Fewer studies explicitly compared one type of infrastructure to another, and even fewer compared insect communities between green-blue infrastructure and traditional infrastructure. Overall, the body of research highlights the importance of plant diversity and reduced intensity of management (e.g., mowing) for most insect taxon groups. While local characteristics seem to be generally more important than landscape factors, insect communities within green-blue infrastructures can also depend on their connectivity and landscape context. Some infrastructure types are generally more beneficial than others; for instance, ground-level habitats tend to support more insects than green roofs. Few studies simultaneously studied synergies or trade-offs with other services provided by green-blue infrastructure, but environmental variables, such as tree cover and plant diversity, that affect insects are likely to also affect the provision of other services such as improving thermal comfort and the well-being of people. Our review offers some initial evidence for how green-blue infrastructure could be designed for multifunctionality with insects in mind.
Supplementary information: The online version contains supplementary material available at 10.1007/s11252-024-01649-4.
{"title":"Evidence-base for urban green-blue infrastructure to support insect diversity.","authors":"Diana E Bowler, Corey T Callaghan, Jéssica F Felappi, Brittany M Mason, Robin Hutchinson, Prashant Kumar, Laurence Jones","doi":"10.1007/s11252-024-01649-4","DOIUrl":"10.1007/s11252-024-01649-4","url":null,"abstract":"<p><p>Green-blue urban infrastructures potentially offer win-win benefits for people and nature in urban areas. Given increasing evidence of widespread declines of insects, as well as their ecological importance, there is a need to better understand the potential role of green-blue urban infrastructure for insect conservation. In this review, we evaluated 201 studies about the ability of green-blue infrastructure to support insect diversity. Most studies were focused on the role of local and landscape-level characteristics of green-blue infrastructure. Fewer studies explicitly compared one type of infrastructure to another, and even fewer compared insect communities between green-blue infrastructure and traditional infrastructure. Overall, the body of research highlights the importance of plant diversity and reduced intensity of management (e.g., mowing) for most insect taxon groups. While local characteristics seem to be generally more important than landscape factors, insect communities within green-blue infrastructures can also depend on their connectivity and landscape context. Some infrastructure types are generally more beneficial than others; for instance, ground-level habitats tend to support more insects than green roofs. Few studies simultaneously studied synergies or trade-offs with other services provided by green-blue infrastructure, but environmental variables, such as tree cover and plant diversity, that affect insects are likely to also affect the provision of other services such as improving thermal comfort and the well-being of people. Our review offers some initial evidence for how green-blue infrastructure could be designed for multifunctionality with insects in mind.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11252-024-01649-4.</p>","PeriodicalId":48869,"journal":{"name":"Urban Ecosystems","volume":"28 1","pages":"1-14"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-13DOI: 10.1007/s12237-024-01442-8
Kristen N Sharpe, Deborah K Steinberg, Karen Stamieszkin
Zooplankton play a key role in the cycling of carbon in aquatic ecosystems, yet their production of carbon-rich fecal pellets, which sink to depth and can fuel benthic community metabolism, is rarely quantified in estuaries. We measured fecal pellet carbon (FPC) production by the whole near-surface mesozooplankton community in the York River sub-estuary of Chesapeake Bay. Zooplankton biomass and taxonomic composition were measured with monthly paired day/night net tows. Live animal experiments were used to quantify FPC production rates of the whole community and dominant individual taxa. Zooplankton biomass increased in surface waters at night (2- to 29-fold) due to diel vertical migration, especially by Acartia spp. copepods. Biomass and diversity were seasonally low in the winter and high in the summer and often dominated by Acartia copepods. Whole community FPC production rates were higher (3- to 65-fold) at night than during the day, with the 0.5-1 mm size class contributing 2-26% to FPC production in the day versus 40-70% at night. An increase in the relative contribution of larger size fractions to total FPC production occurred at night due to diel vertical migration of larger animals into surface waters. Community FPC production was highest in fall due to increased diversity and abundance of larger animals producing larger fecal pellets, and lowest in summer likely due to top-down control of abundant crustacean taxa by gelatinous predators. This study indicates that zooplankton FPC production in estuaries can surpass that in oceanic systems and suggests that fecal pellet export is important in benthic-pelagic coupling in estuaries.
Supplementary information: The online version contains supplementary material available at 10.1007/s12237-024-01442-8.
{"title":"The Role of Zooplankton Community Composition in Fecal Pellet Carbon Production in the York River Estuary, Chesapeake Bay.","authors":"Kristen N Sharpe, Deborah K Steinberg, Karen Stamieszkin","doi":"10.1007/s12237-024-01442-8","DOIUrl":"10.1007/s12237-024-01442-8","url":null,"abstract":"<p><p>Zooplankton play a key role in the cycling of carbon in aquatic ecosystems, yet their production of carbon-rich fecal pellets, which sink to depth and can fuel benthic community metabolism, is rarely quantified in estuaries. We measured fecal pellet carbon (FPC) production by the whole near-surface mesozooplankton community in the York River sub-estuary of Chesapeake Bay. Zooplankton biomass and taxonomic composition were measured with monthly paired day/night net tows. Live animal experiments were used to quantify FPC production rates of the whole community and dominant individual taxa. Zooplankton biomass increased in surface waters at night (2- to 29-fold) due to diel vertical migration, especially by <i>Acartia</i> spp. copepods. Biomass and diversity were seasonally low in the winter and high in the summer and often dominated by <i>Acartia</i> copepods. Whole community FPC production rates were higher (3- to 65-fold) at night than during the day, with the 0.5-1 mm size class contributing 2-26% to FPC production in the day versus 40-70% at night. An increase in the relative contribution of larger size fractions to total FPC production occurred at night due to diel vertical migration of larger animals into surface waters. Community FPC production was highest in fall due to increased diversity and abundance of larger animals producing larger fecal pellets, and lowest in summer likely due to top-down control of abundant crustacean taxa by gelatinous predators. This study indicates that zooplankton FPC production in estuaries can surpass that in oceanic systems and suggests that fecal pellet export is important in benthic-pelagic coupling in estuaries.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12237-024-01442-8.</p>","PeriodicalId":11921,"journal":{"name":"Estuaries and Coasts","volume":"48 1","pages":"17"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561122/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-10-28DOI: 10.1016/j.watres.2024.122637
Tanvir Ahamed, Chao Li, Mengyan Li, Lisa Axe
{"title":"Corrigendum to \"Interactions of graphene oxide with the microbial community of biologically active filters from a water treatment plant\" [Water Research 263 (2024) 122155].","authors":"Tanvir Ahamed, Chao Li, Mengyan Li, Lisa Axe","doi":"10.1016/j.watres.2024.122637","DOIUrl":"10.1016/j.watres.2024.122637","url":null,"abstract":"","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 Pt A","pages":"122637"},"PeriodicalIF":11.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-27DOI: 10.1016/j.marpolbul.2024.117330
Pengpeng Wang, Fang Zhang, Dongjie Guo, Xupeng Chi, Song Feng, Song Sun
A growing realization indicates that the trophic ecology of jellyfish is more diverse than once thought, yet a holistic view reflecting the trophic structure and trophodynamics in bloom-forming jellyfish community remains rare. Based on stable isotope δ13C and δ15N analysis, we estimated the trophic characteristics of common blooms jellyfish Nemopilema nomurai, Cyanea spp., Aurelia coerulea and Aequorea spp. in the coastal waters of China (CWC). Our data indicated that most of the isotopic niche space in the overall planktonic food web was occupied by the bloom-forming jellyfish community. The large spectrum of isotopic niche highlights the diverse ecological roles and potentially broad trophic relevance of these jellyfish in the food web. The substantial trophic diversity of these jellyfish resulted from the various trophic positions occupied by different taxa, complicated niche differentiation and overlap patterns, inconsistent size-based trophic variation, and spatial and temporal variation patterns. Isotopic niche comparisons indicated the presence of niche differentiation, reflecting the difference and individual-specific characteristic in resource exploitation and feeding preference among different jellyfish. Additionally, the inconsistent size-based trophic variation among groups derived from an increase in trophic level with size for Cyanea spp., A. coerulea and Aequorea spp. medusae to no change for N. nomurai medusae, which suggests the complexity in size-related trophic shift patterns within the jellyfish group. Additional diversity also arose from variation in the spatiotemporal structuring of jellyfish trophic ecology, which might be caused by the occurrence of trophic heterogeneity at the base of the planktonic food web. In conclusion, our study characterized the trophic structures of the bloom-forming jellyfish community in the CWC, and revealed their trophic diversity resulting from interspecific, intraspecific (ontogenetic), and spatiotemporal variation. These results hold strong potential to further improve the understanding of the trophic ecology and functional roles of the jellyfish community. Furthermore, this study provides a systematic and valuable isotopic data set, spanning from the food web baseline to zooplanktonic organisms and jellyfish community, against which compare with trophic investigations in future in planktonic food web of the CWC.
{"title":"Trophic diversity of the bloom-forming jellyfish community in the coastal waters of China assessed by stable isotope analysis.","authors":"Pengpeng Wang, Fang Zhang, Dongjie Guo, Xupeng Chi, Song Feng, Song Sun","doi":"10.1016/j.marpolbul.2024.117330","DOIUrl":"10.1016/j.marpolbul.2024.117330","url":null,"abstract":"<p><p>A growing realization indicates that the trophic ecology of jellyfish is more diverse than once thought, yet a holistic view reflecting the trophic structure and trophodynamics in bloom-forming jellyfish community remains rare. Based on stable isotope δ<sup>13</sup>C and δ<sup>15</sup>N analysis, we estimated the trophic characteristics of common blooms jellyfish Nemopilema nomurai, Cyanea spp., Aurelia coerulea and Aequorea spp. in the coastal waters of China (CWC). Our data indicated that most of the isotopic niche space in the overall planktonic food web was occupied by the bloom-forming jellyfish community. The large spectrum of isotopic niche highlights the diverse ecological roles and potentially broad trophic relevance of these jellyfish in the food web. The substantial trophic diversity of these jellyfish resulted from the various trophic positions occupied by different taxa, complicated niche differentiation and overlap patterns, inconsistent size-based trophic variation, and spatial and temporal variation patterns. Isotopic niche comparisons indicated the presence of niche differentiation, reflecting the difference and individual-specific characteristic in resource exploitation and feeding preference among different jellyfish. Additionally, the inconsistent size-based trophic variation among groups derived from an increase in trophic level with size for Cyanea spp., A. coerulea and Aequorea spp. medusae to no change for N. nomurai medusae, which suggests the complexity in size-related trophic shift patterns within the jellyfish group. Additional diversity also arose from variation in the spatiotemporal structuring of jellyfish trophic ecology, which might be caused by the occurrence of trophic heterogeneity at the base of the planktonic food web. In conclusion, our study characterized the trophic structures of the bloom-forming jellyfish community in the CWC, and revealed their trophic diversity resulting from interspecific, intraspecific (ontogenetic), and spatiotemporal variation. These results hold strong potential to further improve the understanding of the trophic ecology and functional roles of the jellyfish community. Furthermore, this study provides a systematic and valuable isotopic data set, spanning from the food web baseline to zooplanktonic organisms and jellyfish community, against which compare with trophic investigations in future in planktonic food web of the CWC.</p>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"210 ","pages":"117330"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-02DOI: 10.1016/j.jenvrad.2024.107593
Shijie Fang, Yifan Chen, Xianwei Wu, Nuo Zhao, Yong Liu
To improve the safety and reliability of radon exhalation rate monitoring systems, this study introduces an early warning method that integrates a VMD-GRU prediction model with a similar day analysis. Initially, radon exhalation rate data are decomposed into components with different informational content using the Variational Mode Decomposition (VMD) algorithm. Each component is forecasted by using the Gated Recurrent Unit (GRU) algorithm, and these forecasts are aggregated to estimate the overall radon exhalation rate. The effectiveness of the VMD-GRU model is validated through comparisons with ELMAN, LSTM, GRU,VMD-ELMAN and VMD-LSTM models. Finally, by combining the VMD-GRU model's outcomes with the similar day analysis, the system performs real-time monitoring and anomaly detection of radon exhalation rates. The results demonstrate that the proposed model effectively identifies and early warnings to abnormal radon fluctuations, significantly enhancing the precision of anomaly early warnings and providing robust decision support for radon monitoring and control, thus paving new paths for similar early warning systems.
{"title":"Radon exhalation rate prediction and early warning model based on VMD-GRU and similar day analysis.","authors":"Shijie Fang, Yifan Chen, Xianwei Wu, Nuo Zhao, Yong Liu","doi":"10.1016/j.jenvrad.2024.107593","DOIUrl":"10.1016/j.jenvrad.2024.107593","url":null,"abstract":"<p><p>To improve the safety and reliability of radon exhalation rate monitoring systems, this study introduces an early warning method that integrates a VMD-GRU prediction model with a similar day analysis. Initially, radon exhalation rate data are decomposed into components with different informational content using the Variational Mode Decomposition (VMD) algorithm. Each component is forecasted by using the Gated Recurrent Unit (GRU) algorithm, and these forecasts are aggregated to estimate the overall radon exhalation rate. The effectiveness of the VMD-GRU model is validated through comparisons with ELMAN, LSTM, GRU,VMD-ELMAN and VMD-LSTM models. Finally, by combining the VMD-GRU model's outcomes with the similar day analysis, the system performs real-time monitoring and anomaly detection of radon exhalation rates. The results demonstrate that the proposed model effectively identifies and early warnings to abnormal radon fluctuations, significantly enhancing the precision of anomaly early warnings and providing robust decision support for radon monitoring and control, thus paving new paths for similar early warning systems.</p>","PeriodicalId":15667,"journal":{"name":"Journal of environmental radioactivity","volume":"281 ","pages":"107593"},"PeriodicalIF":1.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-12-06DOI: 10.1007/s10113-024-02328-y
Derek Katznelson, Antonia Sohns, Dongkyu Kim, Evelyn Roozee, William R Donner, Andrew M Song, Jasper R de Vries, Owen Temby, Gordon M Hickey
Natural resource management networks cohere due to mutual dependencies and fragment, in part, due to the perceived risks of interaction. However, research on these networks has tended to accept coherence a priori rather than problematizing dependence, and few studies exist on interorganizational risk perception. This article presents the results of a study operationalizing these concepts and measuring the distribution of three types of dependence (capital, legitimacy, and regulatory) and two types of perceived risk (performance and sanction) among nearly fifty stakeholder groups and organizations participating in the management of fisheries in the binational Gulf of Maine. The analysis reveals an organizationally diverse network with several stakeholder types participating, with communications clustered binationally, with low levels of perceived risk in interacting, and interdependencies cohering the network. The types of interorganizational dependence present varied across dyadic relationships, but legitimacy dependence, based on shared understandings that organizations should work together, was the most present and had the largest effect on collaboration-oriented network traits. Sanction risk was more common than performance risk but had the most substantial negative effect. The results suggest an opportunity for additional studies of interorganizational dependance and perceived risk to operationalize and measure the sources of network coherence and fragmentation and their effect on collaboration.
Supplementary information: The online version contains supplementary material available at 10.1007/s10113-024-02328-y.
{"title":"Examining the presence and effects of coherence and fragmentation in the Gulf of Maine fishery management network.","authors":"Derek Katznelson, Antonia Sohns, Dongkyu Kim, Evelyn Roozee, William R Donner, Andrew M Song, Jasper R de Vries, Owen Temby, Gordon M Hickey","doi":"10.1007/s10113-024-02328-y","DOIUrl":"10.1007/s10113-024-02328-y","url":null,"abstract":"<p><p>Natural resource management networks cohere due to mutual dependencies and fragment, in part, due to the perceived risks of interaction. However, research on these networks has tended to accept coherence a priori rather than problematizing dependence, and few studies exist on interorganizational risk perception. This article presents the results of a study operationalizing these concepts and measuring the distribution of three types of dependence (capital, legitimacy, and regulatory) and two types of perceived risk (performance and sanction) among nearly fifty stakeholder groups and organizations participating in the management of fisheries in the binational Gulf of Maine. The analysis reveals an organizationally diverse network with several stakeholder types participating, with communications clustered binationally, with low levels of perceived risk in interacting, and interdependencies cohering the network. The types of interorganizational dependence present varied across dyadic relationships, but legitimacy dependence, based on shared understandings that organizations should work together, was the most present and had the largest effect on collaboration-oriented network traits. Sanction risk was more common than performance risk but had the most substantial negative effect. The results suggest an opportunity for additional studies of interorganizational dependance and perceived risk to operationalize and measure the sources of network coherence and fragmentation and their effect on collaboration.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s10113-024-02328-y.</p>","PeriodicalId":54502,"journal":{"name":"Regional Environmental Change","volume":"25 1","pages":"3"},"PeriodicalIF":3.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142803492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-11-27DOI: 10.1016/j.marpolbul.2024.117338
Ke Liu, Jie Fu, Li Li, Daolai Zhang, Xiaotong Xiao
The Jiaozhou Bay (JZB) intertidal zone is a significant carbon reservoir that plays a crucial role in transporting and accumulating organic matter; however, quantitative studies of organic matter sources are scarce. In this study, we present bulk parameters of total organic carbon (TOC), TOC/TN, δ13C, and biomarker contents in 36 surface sediment samples from the JZB intertidal zones to quantify the contribution of organic carbon (OC) derived from terrestrial/marine sources, such as C3 plants, C4 plants, estuarine productivity, sewage outlets, and marine productivity. The results demonstrated that a two-end-member model based on the traditional indicators of TOC/TN or δ13C is not appropriate for quantifying the OC source. The presence of C3 plants, C4 plants, and sewage outlets in the JZB intertidal zone could lead to errors in determining OC contribution when solely using TOC/TN or δ13C. A classical mixing diagram (three-end-member model) utilizing TOC/TN and δ13C values revealed that OC contribution was dominated by marine productivity throughout the intertidal zone. In the west, the average OC contribution from marine productivity, estuarine productivity, and C4 plants was 73.8 %, 14.2 %, and 12.0 %, respectively. In the east, the average OC contribution from marine productivity, estuarine productivity, and sewage outlets was 57.6 %, 24.9 %, and 17.4 %, respectively. The higher OC contribution from marine productivity in the west was attributed to the occurrence of Spartina alterniflora, while the OC contribution from estuarine productivity in the east was primarily due to the presence of more rivers flowing into the JZB compared to the west. By combining biomarkers and OC contents, a significant positive relationship verified the suitability of the end-member values selected for the three-end-member mixing model in the west and east intertidal zones of JZB. This finding was further supported by principal component analysis (PCA) analyses of these proxies. This study demonstrated that OC sources in intertidal zones varied among contrasting coastal environmental conditions and addressed the knowledge gap regarding biogeochemical cycles and ecological protection in the JZB intertidal zones.
{"title":"Source characteristics and quantitative estimates of organic carbon composition in the intertidal zones of Jiaozhou Bay, China.","authors":"Ke Liu, Jie Fu, Li Li, Daolai Zhang, Xiaotong Xiao","doi":"10.1016/j.marpolbul.2024.117338","DOIUrl":"10.1016/j.marpolbul.2024.117338","url":null,"abstract":"<p><p>The Jiaozhou Bay (JZB) intertidal zone is a significant carbon reservoir that plays a crucial role in transporting and accumulating organic matter; however, quantitative studies of organic matter sources are scarce. In this study, we present bulk parameters of total organic carbon (TOC), TOC/TN, δ<sup>13</sup>C, and biomarker contents in 36 surface sediment samples from the JZB intertidal zones to quantify the contribution of organic carbon (OC) derived from terrestrial/marine sources, such as C<sub>3</sub> plants, C<sub>4</sub> plants, estuarine productivity, sewage outlets, and marine productivity. The results demonstrated that a two-end-member model based on the traditional indicators of TOC/TN or δ<sup>13</sup>C is not appropriate for quantifying the OC source. The presence of C<sub>3</sub> plants, C<sub>4</sub> plants, and sewage outlets in the JZB intertidal zone could lead to errors in determining OC contribution when solely using TOC/TN or δ<sup>13</sup>C. A classical mixing diagram (three-end-member model) utilizing TOC/TN and δ<sup>13</sup>C values revealed that OC contribution was dominated by marine productivity throughout the intertidal zone. In the west, the average OC contribution from marine productivity, estuarine productivity, and C<sub>4</sub> plants was 73.8 %, 14.2 %, and 12.0 %, respectively. In the east, the average OC contribution from marine productivity, estuarine productivity, and sewage outlets was 57.6 %, 24.9 %, and 17.4 %, respectively. The higher OC contribution from marine productivity in the west was attributed to the occurrence of Spartina alterniflora, while the OC contribution from estuarine productivity in the east was primarily due to the presence of more rivers flowing into the JZB compared to the west. By combining biomarkers and OC contents, a significant positive relationship verified the suitability of the end-member values selected for the three-end-member mixing model in the west and east intertidal zones of JZB. This finding was further supported by principal component analysis (PCA) analyses of these proxies. This study demonstrated that OC sources in intertidal zones varied among contrasting coastal environmental conditions and addressed the knowledge gap regarding biogeochemical cycles and ecological protection in the JZB intertidal zones.</p>","PeriodicalId":18215,"journal":{"name":"Marine pollution bulletin","volume":"210 ","pages":"117338"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Steroid hormones, including estrone (E1), androstadienedione (ADD), and androstenedione (AED), are prevalent in aquatic ecosystems and pose ecological risks due to their disruptive influence on fish populations. However, little consideration has been given to the endocrine disrupting effects of fish exposed to complex mixtures of hormones in the real world. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to two concentrations of E1 (100 ng/L for E1L and 5,000 ng/L for E1H), ADD (100 ng/L for ADDL and 10,000 ng/L for ADDH), and AED (100 ng/L for AEDL and 10,000 ng/L for AEDH) as well as four binary mixture treatments (ADDL+E1L, ADDH+E1H, AEDL+E1L, and AEDH+E1H). After 42 d, their basic physiological parameters, secondary sex characteristics, gonadal health, embryo numbers, and HPG axis-related gene expression were evaluated. Results showed that the P/D ratio of hemal spines in AEDH+E1H exhibited a pronounced reduction, approximately half that of E1H. Moreover, the number of embryos in ADDH+E1H and AEDH+E1H was reduced by approximately 3-fold compared to E1H. Correspondingly, G. affinis exposure to ADDH+E1H and AEDH+E1H increased the proportion of degenerated oocytes. Exposure to combined treatments led to significant changes in the transcription of HPG axis-related genes in fish and displayed a certain degree of interaction. Furthermore, cluster heatmap analysis of target genes demonstrated that ADD+E1 and AED+E1 (both high and low concentrations) were far apart from ADD, AED and E1. Collectively, these observations imply the presence of antagonistic interactions in combined treatments, and the negative impact on the growth, maturation, and endocrine system of G. affinis varies accordingly.
{"title":"Effects of steroid hormones and their mixtures on western mosquitofish (Gambusia affinis).","authors":"Chen-Si Wang, Guo-Yong Huang, Dong-Qiao Lei, Guang-Guo Ying","doi":"10.1016/j.aquatox.2024.107167","DOIUrl":"10.1016/j.aquatox.2024.107167","url":null,"abstract":"<p><p>Steroid hormones, including estrone (E1), androstadienedione (ADD), and androstenedione (AED), are prevalent in aquatic ecosystems and pose ecological risks due to their disruptive influence on fish populations. However, little consideration has been given to the endocrine disrupting effects of fish exposed to complex mixtures of hormones in the real world. In this study, adult female western mosquitofish (Gambusia affinis) were exposed to two concentrations of E1 (100 ng/L for E1L and 5,000 ng/L for E1H), ADD (100 ng/L for ADDL and 10,000 ng/L for ADDH), and AED (100 ng/L for AEDL and 10,000 ng/L for AEDH) as well as four binary mixture treatments (ADDL+E1L, ADDH+E1H, AEDL+E1L, and AEDH+E1H). After 42 d, their basic physiological parameters, secondary sex characteristics, gonadal health, embryo numbers, and HPG axis-related gene expression were evaluated. Results showed that the P/D ratio of hemal spines in AEDH+E1H exhibited a pronounced reduction, approximately half that of E1H. Moreover, the number of embryos in ADDH+E1H and AEDH+E1H was reduced by approximately 3-fold compared to E1H. Correspondingly, G. affinis exposure to ADDH+E1H and AEDH+E1H increased the proportion of degenerated oocytes. Exposure to combined treatments led to significant changes in the transcription of HPG axis-related genes in fish and displayed a certain degree of interaction. Furthermore, cluster heatmap analysis of target genes demonstrated that ADD+E1 and AED+E1 (both high and low concentrations) were far apart from ADD, AED and E1. Collectively, these observations imply the presence of antagonistic interactions in combined treatments, and the negative impact on the growth, maturation, and endocrine system of G. affinis varies accordingly.</p>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":" ","pages":"107167"},"PeriodicalIF":4.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1007/s10661-024-13460-x
Sangeen Waleed, Muhammad Haroon, Naeem Ullah, Mustafa Tuzen, Imran Khan Rind, Ahmet Sarı
Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.
{"title":"A comprehensive review on advanced trends in treatment technologies for removal of Bisphenol A from aquatic media","authors":"Sangeen Waleed, Muhammad Haroon, Naeem Ullah, Mustafa Tuzen, Imran Khan Rind, Ahmet Sarı","doi":"10.1007/s10661-024-13460-x","DOIUrl":"10.1007/s10661-024-13460-x","url":null,"abstract":"<div><p>Toxic environmental pollutants are considered to be posed a major threat to human and aquatic systems. The fast advancement of the petrochemical and chemical industries has woken up rising worries concerning the pollution of water by contaminants including phenolic Bisphenol A (BPA), an endocrine-disrupting chemical (EDC). The intermediate BPA used in synthesis of certain plastics, polycarbonate polymers, polysulfone, and epoxy resins of various polyesters. Due to potential health risks, severe toxicity, and widespread distribution, there is an urgent need to develop efficient techniques for the removal of BPA. Therefore, advance management for the active elimination of BPA prior to its release into the water sources is of serious concern. Degradation, membrane separation, adsorption, and biological treatments have been extensively examined as they are easy to operate and cost-effective for effective BPA removal. In this review, we summarized the mechanism and performance for removal of BPA by several sorbents, including natural polymers, natural inorganic minerals, porous and carbon-based materials. Comparative results revealed that composite materials and modified adsorbents have good performances for removal of BPA. Furthermore, kinetic study investigating adsorption mechanisms was also discussed. Hazardous quantities of such types of chemicals in various samples have thus been the subject of increasing concern of investigation. This review clarified the extensive literature regarding the major health effects of BPA and its advanced treatment technologies including biological treatment by natural and synthetic materials have been discussed briefly. It delivers regulation for future development and research from the aspects of materials functionalization, development of methods, and mechanism investigation that directing to stimulate developments for removal of emerging contaminants.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-21DOI: 10.1016/j.watres.2024.123031
Bram Geysels, Tjisse Hiemstra, Jan E. Groenenberg, Rob N.J Comans
Binding of glyphosate (PMG) to metal (hydr)oxides controls its availability and mobility in natural waters and soils, and these minerals are often suggested for the removal of PMG from wastewaters. However, a solid mechanistic and quantitative description of the adsorption behavior and surface speciation on these surfaces is still lacking, while it is essential for understanding PMG behavior in aquatic and terrestrial systems. This study gives new insights through advanced surface complexation modeling of new and previously published adsorption data, supplemented with MO/DFT calculations of the geometry, thermochemistry and theoretical infrared (IR) spectra of the surface complexes. PMG complexation by goethite (FeOOH) was measured over a wide range of pH (∼4-10), solution concentration (∼10-7-10-3M), and surface loading (∼0.3-3.0 μmol m-2). Mechanistical modeling using the charge distribution approach revealed the formation of both monodentate and bidentate PMG complexes, each in two protonation states. PMG adsorption is dominated (>60%) by the formation of a bidentate complex having a protonated amino group that deprotonates at high pH and low loading, aligning with previously published ATR-FTIR analyses. Monodentate complexes are less abundant and maintain a protonated amino group over the entire pH range. In addition, the phosphonate group becomes protonated at low pH and high loading. DFT calculations support the role of protons in the surface speciation. The obtained model was able to predict the solution concentration of PMG and its strong pH dependency over the full range in our experiments. Our study provides a new mechanistic and quantitative understanding of PMG binding to goethite, which enables improved predictions of the fate and transport of PMG in and towards natural waters, and provides a framework for optimizing the removal efficiency of PMG with metal (hydr)oxides.
{"title":"Glyphosate binding and speciation at the water-goethite interface: a surface complexation model consistent with IR spectroscopy and MO/DFT","authors":"Bram Geysels, Tjisse Hiemstra, Jan E. Groenenberg, Rob N.J Comans","doi":"10.1016/j.watres.2024.123031","DOIUrl":"https://doi.org/10.1016/j.watres.2024.123031","url":null,"abstract":"Binding of glyphosate (PMG) to metal (hydr)oxides controls its availability and mobility in natural waters and soils, and these minerals are often suggested for the removal of PMG from wastewaters. However, a solid mechanistic and quantitative description of the adsorption behavior and surface speciation on these surfaces is still lacking, while it is essential for understanding PMG behavior in aquatic and terrestrial systems. This study gives new insights through advanced surface complexation modeling of new and previously published adsorption data, supplemented with MO/DFT calculations of the geometry, thermochemistry and theoretical infrared (IR) spectra of the surface complexes. PMG complexation by goethite (FeOOH) was measured over a wide range of pH (∼4-10), solution concentration (∼10<sup>-7</sup>-10<sup>-3</sup>M), and surface loading (∼0.3-3.0 μmol m<sup>-2</sup>). Mechanistical modeling using the charge distribution approach revealed the formation of both monodentate and bidentate PMG complexes, each in two protonation states. PMG adsorption is dominated (>60%) by the formation of a bidentate complex having a protonated amino group that deprotonates at high pH and low loading, aligning with previously published ATR-FTIR analyses. Monodentate complexes are less abundant and maintain a protonated amino group over the entire pH range. In addition, the phosphonate group becomes protonated at low pH and high loading. DFT calculations support the role of protons in the surface speciation. The obtained model was able to predict the solution concentration of PMG and its strong pH dependency over the full range in our experiments. Our study provides a new mechanistic and quantitative understanding of PMG binding to goethite, which enables improved predictions of the fate and transport of PMG in and towards natural waters, and provides a framework for optimizing the removal efficiency of PMG with metal (hydr)oxides.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"13 1","pages":""},"PeriodicalIF":12.8,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}