首页 > 最新文献

材料科学最新文献

英文 中文
IF:
Tailoring High‐Entropy Oxide via Grain Boundary Engineering to Establish Adjacent Asymmetric Redox Sites for Full‐Spectrum Photothermal Catalytic CO 2 Reduction 通过晶界工程剪裁高熵氧化物,建立相邻的不对称氧化还原位点,用于全光谱光热催化co2还原
IF 13.3 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/smll.202513596
Lixiang Wang, Yu Zhang, Xiao Liu, Xin Wen, Xusheng Wang, Lang Pei, Shicheng Yan, Zhigang Zou
Photothermal catalytic CO 2 reduction offers a promising route for full‐spectrum carbon recycling. While high‐entropy oxides (HEO) show potential as photothermal catalysts, their efficiency is often limited by uncoordinated kinetics in CO 2 activation, active proton formation via H 2 O dissociation, and proton migration. Herein, a grain boundaries (GB) engineering strategy is reported to tailor HEO, constructing adjacent asymmetric redox dual sites that simultaneously promote CO 2 activation and proton feeding. Using (CoCrFeMnNi) 3 O 4 HEO nanosheets, it is found that a high density of GB induces electronic redistribution and promotes asymmetric oxygen vacancies (Vo) formation, creating abundant polarized Fe−Vo−Cr−O motifs. Specifically, electron‐deficient Fe centers function as Lewis acid sites, accelerating H 2 O activation to yield active proton, while adjacent photogenerated electron‐rich Cr─O clusters primarily adsorb CO 2 via a bridging mode. Furthermore, the photothermal effect of (CoCrFeMnNi) 3 O 4 HEO catalysts leads to a substantial elevation of the catalyst surface temperature, reaching ≈198 °C, synergistically optimizes the thermodynamics and kinetics of the proton‐coupled electron transfer process. Consequently, the GB‐rich HEO catalysts achieve impressive CH 4 and CO yield rates of 677.7 and 957.2 µmol g −1 h −1 , respectively, with a notable apparent quantum yield of 0.38% at 420 nm, highlighting their significant advantage in CO 2 photoreduction.
光热催化co2还原为全光谱碳回收提供了一条很有前途的途径。虽然高熵氧化物(HEO)显示出作为光热催化剂的潜力,但它们的效率往往受到CO 2活化动力学、通过h2o解离生成活性质子和质子迁移的不协调动力学的限制。本文报道了一种晶界(GB)工程策略来定制HEO,构建相邻的不对称氧化还原双位点,同时促进CO 2活化和质子供给。利用(CoCrFeMnNi) 3o4 HEO纳米片,发现高密度的GB诱导电子重分布,促进不对称氧空位(Vo)的形成,产生丰富的极化Fe - Vo - Cr - O基序。具体来说,缺乏电子的铁中心作为刘易斯酸位点,加速h2o活化以产生活性质子,而相邻的光生成的富电子Cr─O簇主要通过桥接模式吸附二氧化碳。此外,(CoCrFeMnNi) 3o4 HEO催化剂的光热效应导致催化剂表面温度大幅升高,达到约198℃,协同优化了质子耦合电子转移过程的热力学和动力学。因此,富含GB‐HEO催化剂的ch4和CO产率分别达到677.7和957.2µmol g−1 h−1,在420 nm处的表观量子产率为0.38%,显示了它们在co2光还原中的显著优势。
{"title":"Tailoring High‐Entropy Oxide via Grain Boundary Engineering to Establish Adjacent Asymmetric Redox Sites for Full‐Spectrum Photothermal Catalytic CO 2 Reduction","authors":"Lixiang Wang, Yu Zhang, Xiao Liu, Xin Wen, Xusheng Wang, Lang Pei, Shicheng Yan, Zhigang Zou","doi":"10.1002/smll.202513596","DOIUrl":"https://doi.org/10.1002/smll.202513596","url":null,"abstract":"Photothermal catalytic CO <jats:sub>2</jats:sub> reduction offers a promising route for full‐spectrum carbon recycling. While high‐entropy oxides (HEO) show potential as photothermal catalysts, their efficiency is often limited by uncoordinated kinetics in CO <jats:sub>2</jats:sub> activation, active proton formation via H <jats:sub>2</jats:sub> O dissociation, and proton migration. Herein, a grain boundaries (GB) engineering strategy is reported to tailor HEO, constructing adjacent asymmetric redox dual sites that simultaneously promote CO <jats:sub>2</jats:sub> activation and proton feeding. Using (CoCrFeMnNi) <jats:sub>3</jats:sub> O <jats:sub>4</jats:sub> HEO nanosheets, it is found that a high density of GB induces electronic redistribution and promotes asymmetric oxygen vacancies (Vo) formation, creating abundant polarized Fe−Vo−Cr−O motifs. Specifically, electron‐deficient Fe centers function as Lewis acid sites, accelerating H <jats:sub>2</jats:sub> O activation to yield active proton, while adjacent photogenerated electron‐rich Cr─O clusters primarily adsorb CO <jats:sub>2</jats:sub> via a bridging mode. Furthermore, the photothermal effect of (CoCrFeMnNi) <jats:sub>3</jats:sub> O <jats:sub>4</jats:sub> HEO catalysts leads to a substantial elevation of the catalyst surface temperature, reaching ≈198 °C, synergistically optimizes the thermodynamics and kinetics of the proton‐coupled electron transfer process. Consequently, the GB‐rich HEO catalysts achieve impressive CH <jats:sub>4</jats:sub> and CO yield rates of 677.7 and 957.2 µmol g <jats:sup>−1</jats:sup> h <jats:sup>−1</jats:sup> , respectively, with a notable apparent quantum yield of 0.38% at 420 nm, highlighting their significant advantage in CO <jats:sub>2</jats:sub> photoreduction.","PeriodicalId":228,"journal":{"name":"Small","volume":"115 1","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermally Switchable Photoactivity in Azobenzene‐Functionalized DNA Condensates 偶氮苯功能化DNA凝聚物的热可切换光活性
IF 29.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/adma.202518318
Ming‐Di Gao, Chao‐Yang Guan, Jia‐Yao Wang, Jin‐Ying Qi, Nan‐Nan Deng
Soft materials capable of responding to diverse environmental stimuli are fundamental to advancing soft robotics and intelligent biomedical devices, enabling adaptive, life‐like functions. Here, multimodal photothermal adaptability is reported in azobenzene‐conjugated DNA condensates assembled via liquid‐liquid phase separation (LLPS). These coacervates exhibit a striking temperature‐dependent inversion of their photo‐response: at elevated temperatures, the liquid‐like droplets deform under visible light and dissolve under ultraviolet (UV) light, whereas at lower temperatures, the gel‐like condensates are reshaped by UV light while remaining inert to visible light. This unique bidirectional control is attributed to the synergy of confined azobenzene photochemistry within DNA duplexes and a pronounced isomer‐dependent shift in the system's glass transition and melting temperatures. This platform of multi‐responsive photofluids opens new avenues for applications demanding exquisite spatiotemporal control.
能够响应各种环境刺激的软材料是推进软机器人和智能生物医学设备的基础,可以实现自适应、类生命功能。本文报道了偶氮苯共轭DNA凝聚体通过液相分离(LLPS)组装的多模态光热适应性。这些凝聚体的光响应表现出惊人的温度依赖反转:在高温下,液体状液滴在可见光下变形,在紫外线(UV)光下溶解,而在较低温度下,凝胶状凝聚体在紫外线下重塑,而在可见光下保持惰性。这种独特的双向控制是由于DNA双链内的受限偶氮苯光化学的协同作用,以及系统玻璃化转变和熔化温度中明显的同分异构体依赖的转变。这个多响应光流体平台为需要精细时空控制的应用开辟了新的途径。
{"title":"Thermally Switchable Photoactivity in Azobenzene‐Functionalized DNA Condensates","authors":"Ming‐Di Gao, Chao‐Yang Guan, Jia‐Yao Wang, Jin‐Ying Qi, Nan‐Nan Deng","doi":"10.1002/adma.202518318","DOIUrl":"https://doi.org/10.1002/adma.202518318","url":null,"abstract":"Soft materials capable of responding to diverse environmental stimuli are fundamental to advancing soft robotics and intelligent biomedical devices, enabling adaptive, life‐like functions. Here, multimodal photothermal adaptability is reported in azobenzene‐conjugated DNA condensates assembled via liquid‐liquid phase separation (LLPS). These coacervates exhibit a striking temperature‐dependent inversion of their photo‐response: at elevated temperatures, the liquid‐like droplets deform under visible light and dissolve under ultraviolet (UV) light, whereas at lower temperatures, the gel‐like condensates are reshaped by UV light while remaining inert to visible light. This unique bidirectional control is attributed to the synergy of confined azobenzene photochemistry within DNA duplexes and a pronounced isomer‐dependent shift in the system's glass transition and melting temperatures. This platform of multi‐responsive photofluids opens new avenues for applications demanding exquisite spatiotemporal control.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"10 1","pages":""},"PeriodicalIF":29.4,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-situ hydrothermal fabrication of Bi25FeO40/BiFeO3 heterojunction with trinary synergy of piezo-photocatalysis and peroxymonosulfate activation for efficient tetracycline degradation 原位水热制备Bi25FeO40/BiFeO3异质结的压电光催化和过氧单硫酸盐活化三协同作用对四环素的高效降解
IF 6.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Pub Date : 2025-12-13 DOI: 10.1016/j.apsusc.2025.165575
Xiaoye Fan, Haiou Liang, Xingwei Sun, Man Zhang, Tong Xu, Jie Bai
{"title":"In-situ hydrothermal fabrication of Bi25FeO40/BiFeO3 heterojunction with trinary synergy of piezo-photocatalysis and peroxymonosulfate activation for efficient tetracycline degradation","authors":"Xiaoye Fan, Haiou Liang, Xingwei Sun, Man Zhang, Tong Xu, Jie Bai","doi":"10.1016/j.apsusc.2025.165575","DOIUrl":"https://doi.org/10.1016/j.apsusc.2025.165575","url":null,"abstract":"","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"165 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145732264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisting‐Induced Phonon Localization and Ultralow Thermal Conductivity in Penta‐PdTe 2 Bilayer Revealed by a Universal Machine‐Learning Potential 扭转诱导声子局域化和超低导热性在pta - pdte2双分子层中的应用
IF 13.3 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/smll.202509794
Chenxin Zhang, Qian Wang, Puru Jena
The recent synthesis of penta‐PdTe 2 sheet highlights the growing interest in pentagonal topologies for developing new 2D materials. Distinct from previously synthesized 2D pentagonal materials, penta‐PdTe 2 possesses the heaviest elemental composition to date, rendering its phonon transport properties particularly intriguing. In this study, the universal machine‐learning potential, NEP89, is fine‐tuned using high‐accuracy first‐principles data spanning monolayer, bilayer, and twisted configurations of penta‐PdTe 2 and achieving an energy prediction error within 2.3 meV atom −1 . Leveraging the homogeneous non‐equilibrium molecular dynamics simulations with the fine‐tuned machine‐learning potential and Wigner transport theory, the phonon transport behavior and lattice thermal conductivity is systematically investigated. These results reveal that interlayer stacking reduces the bilayer thermal conductivity to 28.00% of the monolayer value, while interlayer twisting induces a further reduction to 76.19%, leading to an ultralow thermal conductivity of (0.30 ± 0.059) W m −1 K −1 . These findings demonstrate that the interplay of pentagonal topology, strategic elemental composition, and twist engineering provides an effective route for tuning phonon transport in 2D materials.
最近penta‐PdTe 2薄片的合成凸显了人们对开发新型二维材料的五边形拓扑结构日益增长的兴趣。与先前合成的二维五边形材料不同,penta‐PdTe 2具有迄今为止最重的元素组成,使其声子输运特性特别有趣。在这项研究中,通用机器学习势,NEP89,使用高精度的第一性原理数据,跨单层,双层和五PdTe 2的扭曲配置进行微调,并实现了2.3 meV原子- 1以内的能量预测误差。利用精细机器学习势和Wigner输运理论的均匀非平衡分子动力学模拟,系统地研究了声子输运行为和晶格热导率。结果表明,层间叠加使双层导热系数降至单层导热系数的28.00%,而层间扭转使双层导热系数降至76.19%,导热系数为(0.30±0.059)W m−1 K−1。这些发现表明,五边形拓扑结构、策略性元素组成和扭转工程的相互作用为调整二维材料中的声子输运提供了有效的途径。
{"title":"Twisting‐Induced Phonon Localization and Ultralow Thermal Conductivity in Penta‐PdTe 2 Bilayer Revealed by a Universal Machine‐Learning Potential","authors":"Chenxin Zhang, Qian Wang, Puru Jena","doi":"10.1002/smll.202509794","DOIUrl":"https://doi.org/10.1002/smll.202509794","url":null,"abstract":"The recent synthesis of penta‐PdTe <jats:sub>2</jats:sub> sheet highlights the growing interest in pentagonal topologies for developing new 2D materials. Distinct from previously synthesized 2D pentagonal materials, penta‐PdTe <jats:sub>2</jats:sub> possesses the heaviest elemental composition to date, rendering its phonon transport properties particularly intriguing. In this study, the universal machine‐learning potential, NEP89, is fine‐tuned using high‐accuracy first‐principles data spanning monolayer, bilayer, and twisted configurations of penta‐PdTe <jats:sub>2</jats:sub> and achieving an energy prediction error within 2.3 meV atom <jats:sup>−1</jats:sup> . Leveraging the homogeneous non‐equilibrium molecular dynamics simulations with the fine‐tuned machine‐learning potential and Wigner transport theory, the phonon transport behavior and lattice thermal conductivity is systematically investigated. These results reveal that interlayer stacking reduces the bilayer thermal conductivity to 28.00% of the monolayer value, while interlayer twisting induces a further reduction to 76.19%, leading to an ultralow thermal conductivity of (0.30 ± 0.059) W m <jats:sup>−1</jats:sup> K <jats:sup>−1</jats:sup> . These findings demonstrate that the interplay of pentagonal topology, strategic elemental composition, and twist engineering provides an effective route for tuning phonon transport in 2D materials.","PeriodicalId":228,"journal":{"name":"Small","volume":"15 1","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring the Proximity of Metal‐Acid in Metal/zeolite Bifunctional Catalysts for Enhanced n ‐Hexane Hydroisomerization 调整金属/沸石双功能催化剂中金属酸的接近度以促进正己烷加氢异构化
IF 13.3 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/smll.202509411
Junjie Li, Yu Wang, Nan Zhang, Jing Ai, Haoshang Wang, Zhizheng Sheng, Jian Zhou, Chuang Liu, Chuanming Wang, Shengli Zhao, Tiezhu Zhang, Fanshun Lin, Zhendong Wang, Yongfeng Hu, Weimin Yang
The spatial arrangement between metal and acid sites critically influences the hydroisomerization efficiency of metal/zeolite catalysts in n ‐alkane conversion. Nevertheless, achieving precise control on metal‐acid intimacy remains a significant challenge at the nanoscale. Herein, Pt nanoparticles are strategically tailored on TiO 2 ‐modified ZSM‐5 carriers via atomic layer deposition, leveraging the TiO 2 spacer thickness as a tunable parameter to modulate interfacial distances. In the hydroisomerization of n ‐hexane, the catalytic performance of the Pt‐Ti/ZSM‐5 with different TiO 2 thickness displayed a volcano‐shaped trend with respect to the metal‐acid distances, peaking at 67.5% iso ‐C6 yield under optimized proximity. This enhanced performance arose from the metal‐acid distance‐mediated diffusion confinement, resulting in the kinetically favorable reaction pathways. The established structure‐property relationship provides a blueprint for rationally designing spatially optimized metal/zeolite catalysts, while advancing the fundamental understanding of bifunctional catalysis.
金属与酸位之间的空间排列对金属/沸石催化剂在正构烷烃转化过程中的加氢异构化效率有重要影响。然而,在纳米尺度上实现对金属-酸亲密度的精确控制仍然是一个重大挑战。在此,通过原子层沉积,Pt纳米颗粒被战略性地定制在tio2修饰的ZSM - 5载流子上,利用tio2间隔层厚度作为可调参数来调节界面距离。在正己烷加氢异构反应中,不同tio2厚度的Pt - Ti/ZSM - 5的催化性能随金属-酸距离呈火山状趋势,在优化的接近度下达到67.5%的产率。这种增强的性能源于金属-酸距离介导的扩散限制,导致了动力学上有利的反应途径。所建立的结构-性质关系为合理设计空间优化的金属/沸石催化剂提供了蓝图,同时促进了对双功能催化的基本认识。
{"title":"Tailoring the Proximity of Metal‐Acid in Metal/zeolite Bifunctional Catalysts for Enhanced n ‐Hexane Hydroisomerization","authors":"Junjie Li, Yu Wang, Nan Zhang, Jing Ai, Haoshang Wang, Zhizheng Sheng, Jian Zhou, Chuang Liu, Chuanming Wang, Shengli Zhao, Tiezhu Zhang, Fanshun Lin, Zhendong Wang, Yongfeng Hu, Weimin Yang","doi":"10.1002/smll.202509411","DOIUrl":"https://doi.org/10.1002/smll.202509411","url":null,"abstract":"The spatial arrangement between metal and acid sites critically influences the hydroisomerization efficiency of metal/zeolite catalysts in <jats:italic>n</jats:italic> ‐alkane conversion. Nevertheless, achieving precise control on metal‐acid intimacy remains a significant challenge at the nanoscale. Herein, Pt nanoparticles are strategically tailored on TiO <jats:sub>2</jats:sub> ‐modified ZSM‐5 carriers via atomic layer deposition, leveraging the TiO <jats:sub>2</jats:sub> spacer thickness as a tunable parameter to modulate interfacial distances. In the hydroisomerization of <jats:italic>n</jats:italic> ‐hexane, the catalytic performance of the Pt‐Ti/ZSM‐5 with different TiO <jats:sub>2</jats:sub> thickness displayed a volcano‐shaped trend with respect to the metal‐acid distances, peaking at 67.5% <jats:italic>iso</jats:italic> ‐C6 yield under optimized proximity. This enhanced performance arose from the metal‐acid distance‐mediated diffusion confinement, resulting in the kinetically favorable reaction pathways. The established structure‐property relationship provides a blueprint for rationally designing spatially optimized metal/zeolite catalysts, while advancing the fundamental understanding of bifunctional catalysis.","PeriodicalId":228,"journal":{"name":"Small","volume":"9 1","pages":""},"PeriodicalIF":13.3,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron Delocalization Engineering on 2D High‐Entropy Metal Oxides for Boosting Electromagnetic Wave Absorption 二维高熵金属氧化物促进电磁波吸收的电子离域工程
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/adfm.202527135
Guangshuai Zhang, Rui Zhang, Ziang Zeng, Beiwen Liu, Yongzhao Hou, Bo Zhong, Long Xia, Guangwu Wen, Dong Wang, Xiaoxiao Huang
High‐entropy oxides (HEOs) hold great potential as electromagnetic absorption (EMA) materials due to their fascinating “cocktail” effect. However, its intrinsic poor dielectric loss hinders EMA capability, while the ingredient design can facilitate dielectric loss regulation, which is critically lacking. Herein, an electronic delocalization engineering that is motivated by metal elements modulation, is implemented on 2D spinel‐type HEOs, which enhances the dielectric loss. In the HEOs with coexisting Cu and Mn (CuMn‐HEOs), the electronic delocalization triggers the restructuring of transition metal valence states and generates abundant oxygen vacancies, which effectively adjust the dielectric loss. Due to the electronic delocalization and unique nanosheet structure, the CuMn‐HEOs exhibit markedly superior absorption performance to other HEOs without Cu and Mn coexisting. Among them, the (CrMnFeNiCu) 3 O 4 achieves a remarkable minimum reflection loss (RL min ) of −50.7 dB (1.94 mm) and a maximum effective absorption bandwidth (EAB max ) of 4.7 GHz. Moreover, through radar scattering cross‐section simulation and assembling HEOs with polyvinyl alcohol into a soft membrane, the practical application potential of CuMn‐HEOs has been proven. This work demonstrates the great potential of electronic delocalization engineering on improving the intrinsic electromagnetic loss capability of metal oxides and paves new insights for developing advanced EMA materials.
高熵氧化物(HEOs)由于其迷人的“鸡尾酒”效应,作为电磁吸收(EMA)材料具有很大的潜力。然而,其固有的低介电损耗阻碍了EMA能力,而成分设计可以促进介电损耗调节,这是严重缺乏的。本文在二维尖晶石型heo上实现了一种由金属元素调制驱动的电子离域工程,从而提高了介质损耗。在Cu和Mn共存的HEOs (CuMn - HEOs)中,电子离域触发了过渡金属价态的重组,并产生了丰富的氧空位,有效地调节了介质损耗。由于电子离域和独特的纳米片结构,CuMn‐HEOs的吸收性能明显优于没有Cu和Mn共存的HEOs。其中,(crmnnfenicu) 304的最小反射损耗(RL min)为- 50.7 dB (1.94 mm),最大有效吸收带宽(EAB max)为4.7 GHz。此外,通过雷达散射截面模拟和聚乙烯醇组装成软膜,证明了CuMn - heo的实际应用潜力。这项工作证明了电子离域工程在改善金属氧化物的固有电磁损耗能力方面的巨大潜力,为开发先进的电磁失磁材料提供了新的见解。
{"title":"Electron Delocalization Engineering on 2D High‐Entropy Metal Oxides for Boosting Electromagnetic Wave Absorption","authors":"Guangshuai Zhang, Rui Zhang, Ziang Zeng, Beiwen Liu, Yongzhao Hou, Bo Zhong, Long Xia, Guangwu Wen, Dong Wang, Xiaoxiao Huang","doi":"10.1002/adfm.202527135","DOIUrl":"https://doi.org/10.1002/adfm.202527135","url":null,"abstract":"High‐entropy oxides (HEOs) hold great potential as electromagnetic absorption (EMA) materials due to their fascinating “cocktail” effect. However, its intrinsic poor dielectric loss hinders EMA capability, while the ingredient design can facilitate dielectric loss regulation, which is critically lacking. Herein, an electronic delocalization engineering that is motivated by metal elements modulation, is implemented on 2D spinel‐type HEOs, which enhances the dielectric loss. In the HEOs with coexisting Cu and Mn (CuMn‐HEOs), the electronic delocalization triggers the restructuring of transition metal valence states and generates abundant oxygen vacancies, which effectively adjust the dielectric loss. Due to the electronic delocalization and unique nanosheet structure, the CuMn‐HEOs exhibit markedly superior absorption performance to other HEOs without Cu and Mn coexisting. Among them, the (CrMnFeNiCu) <jats:sub>3</jats:sub> O <jats:sub>4</jats:sub> achieves a remarkable minimum reflection loss (RL <jats:sub>min</jats:sub> ) of −50.7 dB (1.94 mm) and a maximum effective absorption bandwidth (EAB <jats:sub>max</jats:sub> ) of 4.7 GHz. Moreover, through radar scattering cross‐section simulation and assembling HEOs with polyvinyl alcohol into a soft membrane, the practical application potential of CuMn‐HEOs has been proven. This work demonstrates the great potential of electronic delocalization engineering on improving the intrinsic electromagnetic loss capability of metal oxides and paves new insights for developing advanced EMA materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"146 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Edible Electronics for Energy Harvesting and Antibacterial Preservation via Moisture‐Induced Ion Migration 通过水分诱导离子迁移的能量收集和抗菌保存的可食用电子产品
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/adfm.202528942
Yunhao Hu, Xianrong Zeng, Weifeng Yang, Wei Wei, Yuji Ma, Bo Wu, Kerui Li, Yaogang Li, Qinghong Zhang, Ru Xiao, Chengyi Hou, Minwei Zhang, Hongzhi Wang, Hui Wang
Leveraging the property of moisture‐sensitive foods that generate freely mobile ions during hygroscopic deliquescence, an edible electronic device is proposed in which ion migration enables both self‐powering and antimicrobial preservation. When applied as a fruit coating, this edible electronic device generates directed mobile ions through moisture absorption, exhibiting a peak power density of 0.45 mW cm −3 and enabling direct energy supply for environmental sensors. Simultaneously, the numerous migrating ions interact electrostatically with the negatively charged bacterial membrane, disrupting the charge balance of the membrane, thereby maintaining effective antimicrobial preservation. This self‐powered, fully edible, water‐soluble coating extends the shelf life of fruit by 2.5 to 3.4 times, enabling the development of an intelligent food logistics system for fruit preservation and real‐time monitoring. Furthermore, only 1.5 g of low‐cost food‐based materials, when assembled into an edible circuit, can output up to 81.5 V of direct current or a peak current of 6.1 mA in air. This self‐powered edible electronic concept offers a completely green solution to energy challenges in fields such as food safety monitoring and ingestible medical devices.
利用水分敏感食品在吸湿潮解过程中产生自由移动离子的特性,提出了一种可食用的电子设备,其中离子迁移可以实现自供电和抗菌保存。当应用于水果涂层时,这种可食用电子设备通过吸湿产生定向移动离子,显示出0.45 mW cm - 3的峰值功率密度,并为环境传感器提供直接能量。同时,大量的迁移离子与带负电荷的细菌膜发生静电相互作用,破坏膜的电荷平衡,从而保持有效的抗菌保存。这种自供电、完全可食用的水溶性涂层可将水果的保质期延长2.5至3.4倍,从而开发出用于水果保存和实时监控的智能食品物流系统。此外,只需1.5克低成本的食品基材料,当组装成可食用电路时,就可以在空气中输出高达81.5 V的直流电或6.1 mA的峰值电流。这种自供电的可食用电子概念为食品安全监测和可食用医疗设备等领域的能源挑战提供了完全绿色的解决方案。
{"title":"Edible Electronics for Energy Harvesting and Antibacterial Preservation via Moisture‐Induced Ion Migration","authors":"Yunhao Hu, Xianrong Zeng, Weifeng Yang, Wei Wei, Yuji Ma, Bo Wu, Kerui Li, Yaogang Li, Qinghong Zhang, Ru Xiao, Chengyi Hou, Minwei Zhang, Hongzhi Wang, Hui Wang","doi":"10.1002/adfm.202528942","DOIUrl":"https://doi.org/10.1002/adfm.202528942","url":null,"abstract":"Leveraging the property of moisture‐sensitive foods that generate freely mobile ions during hygroscopic deliquescence, an edible electronic device is proposed in which ion migration enables both self‐powering and antimicrobial preservation. When applied as a fruit coating, this edible electronic device generates directed mobile ions through moisture absorption, exhibiting a peak power density of 0.45 mW cm <jats:sup>−3</jats:sup> and enabling direct energy supply for environmental sensors. Simultaneously, the numerous migrating ions interact electrostatically with the negatively charged bacterial membrane, disrupting the charge balance of the membrane, thereby maintaining effective antimicrobial preservation. This self‐powered, fully edible, water‐soluble coating extends the shelf life of fruit by 2.5 to 3.4 times, enabling the development of an intelligent food logistics system for fruit preservation and real‐time monitoring. Furthermore, only 1.5 g of low‐cost food‐based materials, when assembled into an edible circuit, can output up to 81.5 V of direct current or a peak current of 6.1 mA in air. This self‐powered edible electronic concept offers a completely green solution to energy challenges in fields such as food safety monitoring and ingestible medical devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"39 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
s‐Orbital Mediated Metavalent Bonding Enables State‐Of‐The‐Art n‐Type AgBiSe 2 Thermoelectrics s -轨道介导的元价键可以实现最先进的n -型AgBiSe - 2热电器件
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/adfm.202530091
Binrong Huang, Dasol Kim, Yuan Yu, Jinxuan Zhong, Jianbo Zhu, Yaoling Shen, Yu Guo, Moran Wang, Jiawei Huang, Tu Lyu, Nan Lin, Yongsheng Zhang, Matthias Wuttig, Lipeng Hu
Tailoring chemical bonds offers an innovative way to design materials for a wide range of applications. Metavalent bonding is conducive to excellent thermoelectric performance in p‐bonded chalcogenides with octahedral coordination. However, the requirement to form a bond through only a single p‐electron between adjacent atoms (half of an electron pair), such as in PbTe and Bi 2 Te 3 , limits the number of possible materials. Here, it is shown that the essence of metavalent bonding is a half‐filled single‐electron σ‐bond, which can also be formed with a significant s‐orbital contribution. This is illustrated for AgBiSe 2 , which crystallizes in three different phases: hexagonal, rhombohedral, and cubic. Quantum chemical calculations and bond‐breaking behavior reveal that all three octahedrally coordinated AgBiSe 2 phases utilize metavalent bonding. In addition, PbTe alloying is used to tune the chemical bonding and Br doping to optimize the carrier concentration. With these modifications, a record‐high zT max value of 1.1 is achieved in n‐type cubic (AgBiSe 2 ) 0.75 (PbTe) 0.25 −0.01BiBr 3 at 798 K. The understanding and tailoring of chemical bonds achieved in AgBiSe 2 can be easily extended to other AgVVI 2 compounds.
定制化学键为设计广泛应用的材料提供了一种创新的方法。八面体配位的对键硫族化合物具有良好的热电性能。然而,仅通过相邻原子之间的单个p电子(电子对的一半)形成键的要求,如PbTe和bi2te 3,限制了可能的材料数量。本文表明,元价键的本质是半填充单电子σ键,它也可以在s轨道的贡献下形成。这是AgBiSe 2的例子,它以三种不同的相结晶:六角形、菱形和立方。量子化学计算和断键行为表明,所有三种八面体配位AgBiSe 2相都利用了元价键。此外,利用PbTe合金化调整了化学结合和Br掺杂,优化了载流子浓度。通过这些改进,在798 K下,n型立方(AgBiSe 2) 0.75 (PbTe) 0.25 - 0.01 bibr3中实现了创纪录的zT最大值1.1。在AgBiSe 2中实现的化学键的理解和剪裁可以很容易地扩展到其他agvve2化合物。
{"title":"s‐Orbital Mediated Metavalent Bonding Enables State‐Of‐The‐Art n‐Type AgBiSe 2 Thermoelectrics","authors":"Binrong Huang, Dasol Kim, Yuan Yu, Jinxuan Zhong, Jianbo Zhu, Yaoling Shen, Yu Guo, Moran Wang, Jiawei Huang, Tu Lyu, Nan Lin, Yongsheng Zhang, Matthias Wuttig, Lipeng Hu","doi":"10.1002/adfm.202530091","DOIUrl":"https://doi.org/10.1002/adfm.202530091","url":null,"abstract":"Tailoring chemical bonds offers an innovative way to design materials for a wide range of applications. Metavalent bonding is conducive to excellent thermoelectric performance in p‐bonded chalcogenides with octahedral coordination. However, the requirement to form a bond through only a single p‐electron between adjacent atoms (half of an electron pair), such as in PbTe and Bi <jats:sub>2</jats:sub> Te <jats:sub>3</jats:sub> , limits the number of possible materials. Here, it is shown that the essence of metavalent bonding is a half‐filled single‐electron σ‐bond, which can also be formed with a significant s‐orbital contribution. This is illustrated for AgBiSe <jats:sub>2</jats:sub> , which crystallizes in three different phases: hexagonal, rhombohedral, and cubic. Quantum chemical calculations and bond‐breaking behavior reveal that all three octahedrally coordinated AgBiSe <jats:sub>2</jats:sub> phases utilize metavalent bonding. In addition, PbTe alloying is used to tune the chemical bonding and Br doping to optimize the carrier concentration. With these modifications, a record‐high <jats:italic>zT</jats:italic> <jats:sub>max</jats:sub> value of 1.1 is achieved in n‐type cubic (AgBiSe <jats:sub>2</jats:sub> ) <jats:sub>0.75</jats:sub> (PbTe) <jats:sub>0.25</jats:sub> −0.01BiBr <jats:sub>3</jats:sub> at 798 K. The understanding and tailoring of chemical bonds achieved in AgBiSe <jats:sub>2</jats:sub> can be easily extended to other AgVVI <jats:sub>2</jats:sub> compounds.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"1 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Cells Angiogenesis in Sulfated Glycosaminoglycan (GAG) Hydrogels Enhanced by Bioactive Glass‐Released Ions 生物活性玻璃释放离子增强硫酸糖胺聚糖(GAG)水凝胶内皮细胞血管生成
IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2025-12-13 DOI: 10.1002/adfm.202519933
Marco Piazzoni, Ilaria Borghi, Francesca Cadamuro, Sophia Dalfino, Riccardo Campanile, Sofia Nizzolo, Valeria Cassina, Francesca Tallia, Julian R. Jones, Francesco Mantegazza, Sabrina Bertini, Lorenzo Moroni, Francesco Nicotra, Laura Russo
The successful clinical translation of large‐scale tissue‐engineered constructs is significantly hindered by the lack of functional vascularization, which is crucial for delivering oxygen and nutrients to cells. Current in vitro angiogenesis models often rely on murine tumor‐derived extracellular matrix (ECM) materials, which suffer from non‐defined composition and batch‐to‐batch variability, and on the delivery of growth factors at non‐physiological concentrations. Hydrogels offer a superior alternative for the rational design of biomimetic ECM environments, because of their versatility in tuning biochemical and mechanical properties. This study presents a novel growth factor‐free hydrogel composed of gelatin, chondroitin sulfate, and laminin, designed to promote endothelial cell (EC) angiogenesis in vitro. The hydrogel's mechanical properties are precisely controlled by varying its crosslinking degree, attesting that a softer substrate (Young's modulus ≈80 Pa) significantly boosts ECs tube formation. Furthermore, the angiogenic process is enhanced by several hours with ions released by bioactive glass 58S (BG58S), specifically calcium and silicon. Finally, the expression of angiogenesis‐related genes and the production of matrix remodeling enzymes is augmented in the presence of BG58S‐conditioned medium. It is believed that this bioinstructive sulfate GAG based hydrogel represents a promising solution for vascularizing 3D cellular constructs, marking a significant step toward the clinical application of tissue engineering products.
由于缺乏功能性血管化,大规模组织工程构建的成功临床转化受到严重阻碍,而功能性血管化对于向细胞输送氧气和营养物质至关重要。目前的体外血管生成模型通常依赖于小鼠肿瘤来源的细胞外基质(ECM)材料,这些材料的成分和批次间的可变性不确定,并且依赖于非生理浓度的生长因子的递送。由于水凝胶在调节生物化学和机械性能方面的通用性,它为仿生ECM环境的合理设计提供了一个优越的选择。本研究提出了一种由明胶、硫酸软骨素和层粘连蛋白组成的新型无生长因子水凝胶,旨在促进体外内皮细胞(EC)血管生成。通过改变其交联度,可以精确控制水凝胶的机械性能,证明较软的基材(杨氏模量≈80 Pa)可以显著促进ECs管的形成。此外,生物活性玻璃58S (BG58S)释放的离子,特别是钙和硅,在几个小时内促进血管生成过程。最后,在BG58S条件培养基的存在下,血管生成相关基因的表达和基质重塑酶的产生得到增强。这种具有生物指导性的硫酸盐GAG基水凝胶代表了一种很有前途的三维细胞构建血管解决方案,标志着组织工程产品的临床应用迈出了重要的一步。
{"title":"Endothelial Cells Angiogenesis in Sulfated Glycosaminoglycan (GAG) Hydrogels Enhanced by Bioactive Glass‐Released Ions","authors":"Marco Piazzoni, Ilaria Borghi, Francesca Cadamuro, Sophia Dalfino, Riccardo Campanile, Sofia Nizzolo, Valeria Cassina, Francesca Tallia, Julian R. Jones, Francesco Mantegazza, Sabrina Bertini, Lorenzo Moroni, Francesco Nicotra, Laura Russo","doi":"10.1002/adfm.202519933","DOIUrl":"https://doi.org/10.1002/adfm.202519933","url":null,"abstract":"The successful clinical translation of large‐scale tissue‐engineered constructs is significantly hindered by the lack of functional vascularization, which is crucial for delivering oxygen and nutrients to cells. Current in vitro angiogenesis models often rely on murine tumor‐derived extracellular matrix (ECM) materials, which suffer from non‐defined composition and batch‐to‐batch variability, and on the delivery of growth factors at non‐physiological concentrations. Hydrogels offer a superior alternative for the rational design of biomimetic ECM environments, because of their versatility in tuning biochemical and mechanical properties. This study presents a novel growth factor‐free hydrogel composed of gelatin, chondroitin sulfate, and laminin, designed to promote endothelial cell (EC) angiogenesis in vitro. The hydrogel's mechanical properties are precisely controlled by varying its crosslinking degree, attesting that a softer substrate (Young's modulus ≈80 Pa) significantly boosts ECs tube formation. Furthermore, the angiogenic process is enhanced by several hours with ions released by bioactive glass 58S (BG58S), specifically calcium and silicon. Finally, the expression of angiogenesis‐related genes and the production of matrix remodeling enzymes is augmented in the presence of BG58S‐conditioned medium. It is believed that this bioinstructive sulfate GAG based hydrogel represents a promising solution for vascularizing 3D cellular constructs, marking a significant step toward the clinical application of tissue engineering products.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"147 1","pages":""},"PeriodicalIF":19.0,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Ionic Conductivity in PEO-Based Solid Electrolytes via 3D Hollow Nanotube Fillers for All-Solid-State Lithium Batteries 全固态锂电池用三维空心纳米管填料增强peo基固体电解质的离子电导率
IF 6.6 3区 材料科学 Q1 ELECTROCHEMISTRY Pub Date : 2025-12-13 DOI: 10.1016/j.electacta.2025.148011
Jiahao Li, Yuhua Zhen, Gaohui Ren, Wenjie Yang, Yuanyue Qie, Xinyu Cai, Zheng Yan, Wei Xing, Hongxia Geng
{"title":"Enhanced Ionic Conductivity in PEO-Based Solid Electrolytes via 3D Hollow Nanotube Fillers for All-Solid-State Lithium Batteries","authors":"Jiahao Li, Yuhua Zhen, Gaohui Ren, Wenjie Yang, Yuanyue Qie, Xinyu Cai, Zheng Yan, Wei Xing, Hongxia Geng","doi":"10.1016/j.electacta.2025.148011","DOIUrl":"https://doi.org/10.1016/j.electacta.2025.148011","url":null,"abstract":"","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"12 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2025-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145731952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
全部 ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Energy Lett. ACS Nano Chem. Mater. Nano Lett. Energy Environ. Sci. J. Mater. Chem. A Mater. Chem. Front. Mater. Horiz. Nanoscale Nanoscale Horiz. Sustainable Energy Fuels Adv. Electron. Mater. Adv. Energy Mater. Adv. Funct. Mater. Adv. Mater. Adv. Mater. Interfaces Adv. Opt. Mater. Adv. Sci. Batteries Supercaps J. Am. Ceram. Soc. PROG PHOTOVOLTAICS Small Small Methods Acta Mater. Appl. Surf. Sci. Carbon Ceram. Int. Compos. Sci. Technol. Corros. Sci. CURR OPIN SOLID ST M Dyes Pigm. Electrochim. Acta Energy Storage Mater. FlatChem Intermetallics Int. J. Plast. Joule J. Alloys Compd. J. Cryst. Growth J. Magn. Magn. Mater. J. Mater. Process. Technol. Mater. Des. Mater. Lett. Mater. Today Matter Microporous Mesoporous Mater. Nano Energy Nano Today Particuology Prog. Cryst. Growth Charact. Mater. Prog. Mater Sci. Scr. Mater. Sol. Energy Mater. Sol. Cells Solid State Ionics Adv. Fiber Mater. Appl. Compos. Mater. Bull. Mater. Sci. Carbon Lett. Cellulose Crystallogr. Rep. Electron. Mater. Lett. Eur. J. Wood Wood Prod. Fashion Text. Fibers Polym. Front. Mater. Sci. Glass Ceram. Glass Phys. Chem Inorg. Mater. Int. J. Mater. Form. Int. J. Mech. Mater. Des. JOM-US J. Coat. Technol. Res. J. Electroceram. J. Mater. Eng. Perform. J. Mater. Sci. J. Nanopart. Res. J. Nondestr. Eval. J PHASE EQUILIB DIFF J. Porous Mater. J. Sol-Gel Sci. Technol. J. Superhard Mater. J. Aust. Ceram. Soc. J. Therm. Spray Technol. MECH TIME-DEPEND MAT Met. Sci. Heat Treat. METALLURGIST+ Met. Mater. Int. Nano Convergence Nano Res. Nano-Micro Lett. Oxid. Met. Phys. Mesomech. Powder Metall. Met. Ceram. Prot. Met. Phys. Chem Rare Met. Refract. Ind. Ceram
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1